Skip to main content
Log in

Adjustable microwave dielectric properties of ZnO–TiO2–ZrO2–Nb2O5 composite ceramics via controlling the raw ZrO2 content and sintering temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of 2.5ZnO–(5−x)TiO2xZrO2–2.5Nb2O5 (abbreviated as ZTZN, 0.2 ≤ x ≤ 0.4) composite ceramics were prepared by a solid state reaction method. The phase composition and microwave dielectric properties of the ceramics were investigated. X-ray diffraction patterns displayed the coexistence of ZnTiNb2O8 and Zn0.17Nb0.33Ti0.5O2 phases. With increasing the sintering temperature, the bulk density (ρ), permittivity (ε r ) and temperature coefficient of resonator frequency (τ f ) increased. With increasing the ZrO2 content, the ρ firstly increased and then decreased, Q × f value increased, ε r and τ f value decreased. Importantly, the τ f value of ZTZN ceramics (0.2 ≤ x ≤ 0.4) could be adjusted to near-zero. The 2.5ZnO–4.7TiO2–0.3ZrO2–2.5Nb2O5 ceramics sintered at 1075 °C exhibited the best comprehensive performances of Q × f = 30,155 GHz, ε r  = 44 and τ f  = 0.89 ppm/°C, indicating that they are candidates for microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z.Y. Zou, Z.H. Chen, X.K. Lan, W.Z. Lu, B. Ullah, X.H. Wang, W. Lei, Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+x)Si2O(7+x) ceramics. J. Eur. Ceram. Soc. 37, 3065–3071 (2017)

    Article  Google Scholar 

  2. H.F. Zhou, J. Huang, X.H. Tan, Microwave dielectric properties of low-permittivity CaMgSiO4 ceramic. J. Mater. Sci.: Mater. Electron. 28, 15258–15262 (2017)

    Google Scholar 

  3. J. Guo, D. Zhou, H. Wang, Microwave dielectric properties of (1-x)ZnMoO4-xTiO2 composite ceramics. J. Alloys Compd. 509, 5863–5865 (2011)

    Article  Google Scholar 

  4. Z.G. Zang, X.S. Tang, Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method. J. Alloys Compd. 619, 98–101 (2015)

    Article  Google Scholar 

  5. C.L. Huang, M.H. Weng, Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature. Mater. Res. Bull. 36, 2741–2750 (2001)

    Article  Google Scholar 

  6. R. Freer, Microwave dielectric ceramics: an overview. Silic. Ind. 58, 191–197 (1993)

    Google Scholar 

  7. R.C. Pullar, C. Lai, F. Azough, Novel microwave dielectric LTCCs based upon V2O5 doped M2+Cu2Nb2O8 compounds (M2+ = Zn, Co, Ni, Mg and Ca). J. Eur. Ceram. Soc. 26, 1943–1946 (2006)

    Article  Google Scholar 

  8. J.S. Kim, J.C. Lee, C.I. Cheon, H.J. Kang, Crystal structure and low temperature cofiring ceramic property of (1-x)(Li, Re)W2O8-xBaWO4 ceramics (Re = Y, Yb). Jpn. J. Appl. Phys. 45, 7397–7400 (2006)

    Article  Google Scholar 

  9. H.F. Zhou, X.B. Liu, X.L. Chen et al., ZnLi2/3Ti4/3O4: a new low loss spinel microwave dielectric ceramic. J. Eur. Ceram. Soc. 32, 261–265 (2012)

    Article  Google Scholar 

  10. D. Zhou, C.A. Randall, L.X. Pang, Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature. J. Am. Ceram. Soc. 94, 348–350 (2011)

    Article  Google Scholar 

  11. K. Fukuda, R. Kitoh, I. Awai, Microwave characteristics of TiO2BiO3 dielectric resonator. Jpn. J. Appl. Phys. 32, 4584–4588 (1993)

    Article  Google Scholar 

  12. C.F. Tseng, P.S. Tsai, Microwave dielectric properties of (1-x)ZnAl2O4-xCaTiO3 compound ceramic with controlled temperature coefficient. Ceram. Int. 39, 75–79 (2013)

    Article  Google Scholar 

  13. D. Zhou, W.G. Qu, C.A. Randall, Ferroelastic phase transition compositional dependence for solid-solution [(Li0.5Bi0.5) x Bi1–x][Mo x V1–x]O4 scheelite-structured microwave dielectric ceramics. Acta. Mater. 59, 1502–1509 (2011)

    Article  Google Scholar 

  14. H.T. Chen, B. Tang, S. Duan et al., Microstructure and microwave dielectric properties of Ba3.75Nd9.5Ti18–z(Mg1/3Nb2/3) z O54 ceramics. J. Electron. Mater. 44, 1081–1087 (2015)

    Article  Google Scholar 

  15. D.H. Kim, C. An, Y.S. Lee et al., Microwave dielectric properties of ZnO-RO2-TiO2-Nb2O5 (R = Sn, Zr, Ce) ceramic system. J. Mater. Sci. Lett. 22, 569–571 (2003)

    Article  Google Scholar 

  16. K.S. Kim, S. Kim, H.K. Yun, O.Y. Soon, J.G. Park, Sintering behavior and microwave dielectric properties of the Zr1–x(Zn1/3Nb2/3) x TiO4 system with zinc-borosilicate glass. J. Ceram. Process. Res. 9, 126–130 (2008)

    Google Scholar 

  17. F.S. Song, Y.M. Li, Z.X. Shen et al., Effect of TiO2 addition amount on structure and microwave dielectric properties of Zn0.8Mg0.2ZrNb2O8 ceramic. J. Chin. Ceram. Soc. 43, 1725–1730 (2015)

    Google Scholar 

  18. X.C. Liu, F. Gao, C.S. Tian, Synthesis, low-temperature sintering and the dielectric properties of the ZnO-(1-x)TiO2-xSnO2 (x = 0.04–0.2). Mater. Res. Bull. 43, 693–699 (2008)

    Article  Google Scholar 

  19. A. Baumgarte, R. Blachnik, New M2+M4+Nb2O8 phases. J. Alloys Compd. 215, 117–120 (1994)

    Article  Google Scholar 

  20. J. Andrade, M.E. Villafuerte-Castrejon, R. Valenzuela, A.R. West, Rutile solid solutions containing M+(Li), M2+(Zn, Mg), M3+(Al) and M5+(Nb, Ta, Sb) ions. J. Mater. Sci. Lett. 5, 147–149 (1986)

    Article  Google Scholar 

  21. S. Wu, J. Luo, Mg-substituted ZnNb2O6–TiO2 composite ceramics for RF/microwaves ceramic capacitors. J. Alloys Compd. 509, 8126–8129 (2011)

    Article  Google Scholar 

  22. H.P. Wang, Q.L. Zhang, H. Yang, Low-temperature firing and microwave dielectric properties of ZnO–Nb2O5–TiO2–SnO2 ceramics with CuO–V2O5, Mater. Res. Bull. 40, 1891–1898 (2005)

    Article  Google Scholar 

  23. E.S. Kim, D.H. Kang, Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/3 5+) x Ti1–xO2 (B5+ = Nb, Ta) ceramics. Ceram. Int. 34, 883–888 (2008)

    Article  Google Scholar 

  24. S.J. Penn, N.M. Alford, A. Templeton et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Article  Google Scholar 

  25. L.X. Li, X. Ren, Q.W. Liao, Crystal structure and microwave dielectric properties of Zn0.9Ti0.8–xSn x Nb2.2O8 ceramics. Ceram. Int. 38, 3985–3989 (2012)

    Article  Google Scholar 

  26. R.G. Hoagland, S.M. Valone, Emission of dislocations from grain boundaries by grain boundary dissociation. Philos. Mag. 95, 112–131 (2015)

    Article  Google Scholar 

  27. H.F. Zhou, X.H. Tan, J. Huang, Sintering behavior, phase structure and adjustable microwave dielectric properties of Li2O-MgO-nTiO2 ceramics (1 ≤ n ≤ 5). J. Mater. Sci.: Mater. Electron. 28, 6475–6480 (2017)

    Google Scholar 

  28. P. Ruan, P. Liu, B.C. Guo, F. Li, Z.F. Fu, Microwave dielectric properties of ZnO-Nb2O5-xTiO2 ceramics prepared by reaction-sintering process. J. Mater. Sci.: Mater. Electron. 27, 4201–4205 (2016)

    Google Scholar 

  29. W. Lei, Z.Y. Zou, Z.H. Chen, B. Ullah, A. Zeb, Controllable τ f value of barium silicate microwave dielectric ceramics with different Ba/Si ratios. J. Am. Ceram. Soc. 101, 25–30 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 11464009, 61761015 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011, 2015GXNSFDA139033 and 2017GXNSFDA198027) and Research Start-up Funds Doctor of Guilin University of Technology (No. GUTQDJJ2017133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanfu Zhou or Xiaobin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Zhou, H., Tan, X. et al. Adjustable microwave dielectric properties of ZnO–TiO2–ZrO2–Nb2O5 composite ceramics via controlling the raw ZrO2 content and sintering temperature. J Mater Sci: Mater Electron 29, 12055–12060 (2018). https://doi.org/10.1007/s10854-018-9311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9311-x

Navigation