Skip to main content
Log in

A critical structured TiO2 with enhanced photocatalytic activity during the formation of yolk-shell structured TiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Yolk-shell structured TiO2 microspheres were synthesized by using a facile hydrothermal method with ammonium chloride (NH4Cl) as additive. Ostwald ripening mechanism was proposed to explain the growth of yolk-shell structured TiO2 by conducting a series of time-dependent experiments, where the solid microspheres, narrow-band-like structured, wide-band-like structured and shedding structured samples were obtained. The as-synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller analysis (BET) and UV–Vis spectra. BET results showed that the as-synthesized powders displayed bimodal pore size distributions and the wide-band-like structured sample had the largest specific surface area. The photocatalytic efficiency of Rhodamine B (RhB) achieved 99.24% for wide-band-like structured TiO2 photocatalyst, under 500 W Xe lamp irradiation, indicating that the increase of 28.0%, 11.3%, 12.2% and 7.41% was achievd compared to the photocatalytic efficiency of solid microspheres (77.53%), narrow-band-like structured (89.17%), shedding-shell structured TiO2 (88.42%) and Degussa P25 (91.89%) as photocatalysts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.Q. Fang, X.H. Yang, H.J. Zhu, Z. Li, H.J. Zhao, X.D. Yao, H.G. Yang, J. Mater. Chem. 22, 22082–22089 (2012)

    Article  CAS  Google Scholar 

  2. J. Liao, H.P. Lin, H.Y. Chen, D.B. Kuang, C.Y. Su, J. Mater. Chem. 22, 1627–1633 (2012)

    Article  CAS  Google Scholar 

  3. Y. Liang, W. Liu, W. Hu, Q. Zhou, T. Wang, Y. Yang, R. Hu, Q. Yuan, Z. Zou, J. Mater. Sci.: Mater. Electron. 28, 11800–11805 (2017)

    CAS  Google Scholar 

  4. H. Wang, B.L. Wang, S.Y. Ma, Chin. Chem. Lett. 24, 260–263 (2013)

    Article  Google Scholar 

  5. J. Jin, S.Z. Huang, Y. Li, H. Tian, H.E. Wang, Y. Yu, L.H. Chen, T. Hasan, B.L. Su, Nanoscale 7, 12979–12989 (2015)

    Article  CAS  Google Scholar 

  6. Z.Q. Li, W.C. Chen, F.L. Guo, L.E. Mo, L.H. Hu, S.Y. Dai, Sci. Rep. 5, 14178–14185 (2015)

    Article  CAS  Google Scholar 

  7. Y. Sun, H. Lin, C. Wang, Q. Wu, X. Wang, M. Yang, Inorg. Chem. Front. 5, 145–152 (2018)

    Article  CAS  Google Scholar 

  8. H. Wan, W. Yao, W. Zhu, Y. Tang, H. Ge, X. Shi, T. Duan, Appl. Surf. Sci. 444, 355–363 (2018)

    Article  CAS  Google Scholar 

  9. W. Liao, J. Tian, Z. Shan, H. Lin, R. Na, J. Alloy Compd. 739, 746–754 (2018)

    Article  CAS  Google Scholar 

  10. L.L. Lai, W. Wen, J.M. Wu, CrystEngComm 18, 5195–5201 (2016)

    Article  CAS  Google Scholar 

  11. K. Guo, M. Li, X. Fang, L. Bai, M. Luoshan, F. Zhang, X. Zhao, J. Power Sources 264, 35–41 (2014)

    Article  CAS  Google Scholar 

  12. L. Sun, Z. Li, Z. Li, Y. Hu, C. Chen, C. Yang, B. Du, Y. Sun, F. Besenbacher, M. Yu, Nanoscale 9, 16183–16192 (2017)

    Article  CAS  Google Scholar 

  13. C.C. Yec, H.C. Zeng, J. Mater. Chem. A 2, 4843–4851 (2014)

    Article  CAS  Google Scholar 

  14. X. Wang, Y. Wang, L. Yang, K. Wang, X. Lou, B. Cai, J. Power Sources. 262, 72–78 (2014)

    Article  CAS  Google Scholar 

  15. H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc. 129, 8406–8407 (2007)

    Article  CAS  Google Scholar 

  16. H.C. Zeng, J. Mater. Chem. 21, 7511–7526 (2011)

    Article  CAS  Google Scholar 

  17. Y. Zhao, F. Pan, H. Li, J. Phys. Chem. C 117, 21718–21723 (2013)

    Article  CAS  Google Scholar 

  18. Y. Zhao, Q. Chen, F. Pan, H. Li, G. Xu, W. Chen, Chem.-Eur. J. 20, 1–7 (2014)

    Article  Google Scholar 

  19. Y. Yang, G. Wang, Q. Deng, D.H.L. Ng, H. Zhao, ACS Appl. Mater. Inter. 6, 3008–3015 (2014)

    Article  CAS  Google Scholar 

  20. Y. Yang, J.X. Hu, Y. Liang, J.P. Zou, K. Xu, R.J. Hu, Z.D. Zou, Q. Yuan, Q.Q. Chen, Y. Lu, T. Yu, C.L. Yuan, J. Alloy Compd. 694, 292–299 (2017)

    Article  CAS  Google Scholar 

  21. J.G. Yu, J.J. Fan, K.L. Lv, Nanoscale 2, 2144–2149 (2010)

    Article  CAS  Google Scholar 

  22. J.S. Chen, D. Luan, C.M. Li, F.Y.C. Boey, S. Qiao, X.W. Lou, Chem. Commun. 46, 8252–8254 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (51874200), Liaoning Province College Innovative Talents Fund Project (LR2016052), Liaoning Bai Qian Wan Talents Program and the Natural Science Foundation of Liaoning Province (2015020229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingchun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, M., Li, S. et al. A critical structured TiO2 with enhanced photocatalytic activity during the formation of yolk-shell structured TiO2. J Mater Sci: Mater Electron 31, 2–9 (2020). https://doi.org/10.1007/s10854-018-9986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9986-z

Navigation