Skip to main content
Log in

A noninvasive method for measuring the oxygen binding-releasing capacity of hemoglobin-loaded polymeric nanoparticles as oxygen carrier

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Based on the strong penetration capacity of near infrared lights (NIRs) and different absorption of oxyhemoglobin and deoxyhemoglobin in NIRs region, a novel noninvasive method, with the aid of an airproof-equilibrium apparatus, was developed to determine the oxygen binding-releasing capacity, including oxygen dissociation curve (ODC) and P50, of the hemoglobin-loaded polymeric nanoparticles (HbP) in this study. The measured ODC of the PLA-PEG HbP was very close to that of the native hemoglobin, and the corresponding P50 (26.1 mmHg) was also near to the native precursor protein (27.3 mmHg), indicative of the validity of the method proposed. To further verify the method proposed, the oxygen binding-releasing capacity of the HbPs prepared by PCL, PCL-PEG, PLA were also investigated with human blood as control. These results indicated that the method developed here enabled accurate and noninvasive determination of the oxygen binding-releasing capacity of the biodegradable polymeric oxygen carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Chauvierre, M.C. Marden, C. Vauthier, D. Labarre, P. Couvreur, L. Lecler, Biomaterials 25, 3081 (2004). doi:10.1016/j.biomaterials.2003.09.097

    Article  PubMed  CAS  Google Scholar 

  2. S.L. Li, J. Nickels, A.F. Palmer, Biomaterials 26, 3759 (2005). doi:10.1016/j.biomaterials.2004.09.015

    Article  PubMed  CAS  Google Scholar 

  3. V. Budhiraja, J.D. Hellums, Microvasc. Res. 64, 220 (2002). doi:10.1006/mvre.2002.2418

    Article  PubMed  CAS  Google Scholar 

  4. T.M.S. Chang, Trends Biochem. Sci. 17, 61 (1999)

    CAS  Google Scholar 

  5. T.M.S. Chang, J. Intern. Med. 253, 527 (2003). doi:10.1046/j.1365-2796.2003.01151.x

    Article  PubMed  CAS  Google Scholar 

  6. O. Siggaard-Antiersan, N. Wimberley, Scand. J. Clin. Lab. Invest. 48, 7 (1988). doi:10.3109/00365518809086606

    Article  Google Scholar 

  7. P.S. Addison, J.N. Watson, Med. Eng. Phys. 27, 245 (2005). doi:10.1016/j.medengphy.2004.10.002

    Article  PubMed  Google Scholar 

  8. N.A. Rosen, W.E. Charash, E.F. Hirsch, J. Surg. Res. 106, 282 (2002). doi:10.1006/jsre.2002.6377

    Article  PubMed  CAS  Google Scholar 

  9. J. Zhao, C.S. Liu, Y. Yuan, X.Y. Tao, X.Q. Shan, Y. Sheng, F. Wu, Biomaterials 28, 1414 (2007). doi:10.1016/j.biomaterials.2006.10.012

    Article  PubMed  CAS  Google Scholar 

  10. X.L. Zhang, C.S. Liu, Y. Yuan, S. Zhang, X.Q. Shan, Y. Sheng, F. Xu, J. Mater. Sci. Mater. Med. 19, 2463 (2008). doi:10.1007/s10856-007-3358-1

    Article  PubMed  CAS  Google Scholar 

  11. B. Giardina, G. Amiconi, Meth. Enzymol. 76, 417 (1981). doi:10.1016/0076-6879(81)76133-0

    Article  PubMed  CAS  Google Scholar 

  12. H.E. Julie, A.F. Palmer, Biotechnol. Prog. 20, 1543 (2004). doi:10.1021/bp049872l

    Article  Google Scholar 

  13. F. Moraga, C. Monge, R. Riquelme, A.J. Llanos, Comp. Biochem. Physiol. 115, 111 (1996). doi:10.1016/0300-9629(96)00016-3

    Article  CAS  Google Scholar 

  14. F.T. Meng, G.H. Ma, Y.D. Liu, W. Qiu, Z.G. Su, Colloid. Surf. B. 33, 177 (2004). doi:10.1016/j.colsurfb.2003.10.003

    Article  Google Scholar 

  15. E.K. Park, S.B. Lee, Y.M. Lee, Biomaterials 26, 1053 (2005). doi:10.1016/j.biomaterials.2004.04.008

    Article  PubMed  CAS  Google Scholar 

  16. C.Y. Zheng, G.H. Ma, Z.G. Su, Process. Biochem. 42, 303 (2007). doi:10.1016/j.procbio.2006.08.011

    Article  CAS  Google Scholar 

  17. W.G. Zijlstra, A. Buursma, Comp. Biochem. Physiol. 118(B), 743 (1997)

    Google Scholar 

  18. R. Gatto, W. Hoffman, M. Mueller, A. Flores, V.N. Tibor, F.T. Charbel, J. Neurosci. Method. 157, 274 (2006). doi:10.1016/j.jneumeth.2006.04.013

    Article  CAS  Google Scholar 

  19. X.H. Li, Y.H. Zhang, R.H. Yan, W.X. Jia, M.L. Yuan, X.M. Deng, Z.T. Huang, J. Control. Release 68, 41 (2000). doi:10.1016/S0168-3659(00)00235-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors appreciate the financial support from the National High Technology Research and Development Program of China (863 Program) (No. 2004AA-302050) and from Shanghai Nanotechnology Special Foundation (No. 0452nm022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Liu, C., Yuan, Y. et al. A noninvasive method for measuring the oxygen binding-releasing capacity of hemoglobin-loaded polymeric nanoparticles as oxygen carrier. J Mater Sci: Mater Med 20, 1025–1030 (2009). https://doi.org/10.1007/s10856-008-3676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3676-y

Keywords

Navigation