Skip to main content
Log in

A shape memory stent of poly(ε-caprolactone-co-dl-lactide) copolymer for potential treatment of esophageal stenosis

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable polymer stent with shape memory effect is expected to be developed in the treatment of esophageal stenosis, most likely due to traditional stents having such shortages as considerable rigidity and nondegradation. A tubular stent with the inner and outer diameters of 28 and 30 mm was manufactured from biodegradable poly(ε-caprolactone-co-dl-lactide) (PCLA) copolymer consisting of ε-caprolactone and dl-lactide at a weight ratio of 10/90. A series of tests were accomplished to investigate its properties including shape memory effects (SMEs), compression property and influence of in vitro degradation of polymer matrix on its shape recovery and dilation force. Significantly, an implantation of the stent into a dog model was performed to evaluate its function for the treatment of esophageal stenosis. The deformed stent needs about 36 s to recover its initial shape in vitro in 37°C warm water. The primary animal experiment in vivo has revealed that the implanted deformed stent could be triggered by body temperature and expectedly returned to a nearly-round shape to support esophageal wall. Therefore, the biodegradable intelligent polymer stent may be great potential to displace the conventional metallic stents for the esophageal stenosis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kajzer W, Kaczmarek M, Marciniak J. Biomechanical analysis of stent-oesophagus system. J Mater Process Technol. 2005;162–163:196–202.

    Article  Google Scholar 

  2. Guo Q, Guo S, Wang Z. A type of esophageal stent coating composed of one 5-fluorouracil-containing EVA layer and one drug-free protective layer: in vitro release, permeation and mechanical properties. J Control Release. 2007;118:318–24.

    Article  CAS  Google Scholar 

  3. Ryhänen J, Kallioinen M, Tuukkanen J, Junila J, Niemelä E, Sandvik P, et al. In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness. J Biomed Mater Res A. 1998;41:481–8.

    Article  Google Scholar 

  4. Kajzer W, Chrzanowski W, Marciniak J. Corrosion resistance of Cr-Ni-Mo steel intended for urological stents. Int J Microstruct Mater. 2007;2:188–201.

    CAS  Google Scholar 

  5. Kajzer W, Kaczmarek M, Krauze A, Marciniak J. Surface modification and corrosion resistance of Ni–Ti alloy used for urological stents. J Ach Mater Manuf Eng. 2007;20(1–2):123–6.

    Google Scholar 

  6. Kajzer W, Kaczmarek M, Krauze A, Marciniak J. Surface modification and corrosion behavior of Ni-Ti alloy used for urological implants. Arch Mater Sci. 2007;28:525–32.

    Google Scholar 

  7. Lewis AL, Tolhurst LA, Stratford PW. Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation. Biomaterials. 2002;23:1697–706.

    Article  CAS  Google Scholar 

  8. Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials. 2007;28:1689–710.

    Article  CAS  Google Scholar 

  9. Venkatraman S, Poh TL, Vinalia T, Mak KH, Boey F. Collapse pressures of biodegradable stents. Biomaterials. 2003;24:2105–11.

    Article  CAS  Google Scholar 

  10. Takeshita F, Takata H, Ayukawa Y, Suetsugu T. Histomorphometric analysis of the response of rat tibiae to shape memory alloy (nitinol). Biomaterials. 1997;18:21–5.

    Article  CAS  Google Scholar 

  11. Rondelli G, Vicentini B. Effect of copper on the localized corrosion resistance of Ni–Ti shape memory alloy. Biomaterials. 2002;23:639–44.

    Article  CAS  Google Scholar 

  12. Wang M, Sze D, Wang Z, Wang Z, Gao Y, Dake M. Delayed complications after esophageal stent placement for treatment of malignant esophageal obstructions and esophagorespiratory fistulas. J Vasc Interven Radiol. 2001;12:465–74.

    Article  CAS  Google Scholar 

  13. Song HY, Park SI, Do YS, Yoon HK, Sung KB, Sohn KH, Min YI. Expandable metallic stent placement in patients with benign esophageal strictures: results of long-term follow-up. Radiology. 1997;203:131–6.

    CAS  Google Scholar 

  14. Rico FR, Panzer AM, Kooros K, Rossi TM, Pegoli WJ. Use of polyflex airway stent in the treatment of perforated esophageal stricture in an infant: a case report. J Pediat Surg. 2007;42:E5–8.

    Article  Google Scholar 

  15. Nguyen N, Shah J. Traversing difficult esophageal strictures from the oral approach. Tech Gastrointest Endosc. 2008;10:142–8.

    Article  Google Scholar 

  16. Holm AN, a Levy JG, Gostout CJ, Topazian MD, Baron TH. Self-expanding plastic stents in treatment of benign esophageal conditions. Gastrointest Endosc. 2008;67:20–5.

    Article  Google Scholar 

  17. Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science. 2002;296:1673–6.

    Article  Google Scholar 

  18. Lendlein A, Kratz K, Kelch S. Smart implant materials. Med Device Technol. 2005;16(3):12–4.

    CAS  Google Scholar 

  19. Alteheld A, Feng Y, Kelch S, Lendlein A. Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew Chem Int Ed. 2005;44(8):1188–92.

    Article  CAS  Google Scholar 

  20. Lendlein A, Schmidt AM, Schroeter M, Langer R. Shape-memory polymer networks from Oligo (ε-caprolactone) Dimethacrylates. J Polym Sci A. 2005;43:1369–81.

    Article  CAS  Google Scholar 

  21. Zheng X, Zhou S, Li X, Wen J. Shape memory properties of poly (D, L-lactide)/hydroxyapatite composites. Biomaterials. 2006;27:4288–95.

    Article  CAS  Google Scholar 

  22. Zhou S, Deng X, Yang H. Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials. 2003;24:3563–70.

    Article  CAS  Google Scholar 

  23. Liu YP, Gall K, Dunn ML, Greenberg AR, Diani J. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int J Plast. 2006;22:279–313.

    Article  CAS  Google Scholar 

  24. GÖpferich A. Degradation of biodegradable polymers. Biodegradable polymers—from monomer to the clinic. In: 6th world biomaterials congress, USA, 2000.

  25. Gorna K, Gogolewski S. The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym Degrad Stab. 2003;79:465–74.

    Article  CAS  Google Scholar 

  26. Horan RL, Antle K, Collette AL. In vitro degradation of silk fibroin. Biomaterials. 2005;26:3385–93.

    Article  CAS  Google Scholar 

  27. Liao K, Quan D, Lu Z. Effects of physical aging on glass transition behavior of poly (dl-lactide). Eur Polym J. 2002;38:157–62.

    Article  CAS  Google Scholar 

  28. Ho CH, Vu-Khanh T. Physical aging and time–temperature behavior concerning fracture performance of polycarbonate. Theor Appl Fract Mech. 2004;41:103–14.

    Article  CAS  Google Scholar 

  29. Leblanc N, Saiah R, Beucher E, Gattin R, Castandet M, Saiter JM. Structural investigation and thermal stability of new extruded wheat flour based polymeric materials. Carbohyd Polym. 2008;73:548–57.

    Article  CAS  Google Scholar 

  30. Takahara K, Saito H, Inoue T. Physical aging in poly(methyl methacrylate) glass: densification via density fluctuation. Polymer. 1999;40:3729–33.

    Article  CAS  Google Scholar 

  31. Zheng X, Zhou S, Yu X, Li X, Feng B, Qu S, Weng J. Effect of in vitro degradation of poly(d, l-lactide)/β-tricalcium composite on its shape-memory properties. J Biomed Mater Res B Appl Biomater. 2008;86B:170–80.

    Article  CAS  Google Scholar 

  32. Ferry JD. Viscoelastic properties of polymers. New York: Wiley Press; 1961.

  33. Lorenzo V, Díaz-Lantada A, Lafont P, Lorenzo-Yustos H, Fonseca C, Acosta J. Physical ageing of a PU-based shape memory polymer: influence on their applicability to the development of medical devices. Mater Des. 2009;30:2431–4.

    Article  CAS  Google Scholar 

  34. Fox TG, Flory PJ. Viscosity-molecular weight and viscosity-temperature relationships for polystyrene and polyisobutylene. J Am Chem Soc. 1948;70(7):2384–95.

    Article  CAS  Google Scholar 

  35. Fox TG, Flory PJ. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys. 1950;21:581–91.

    Article  CAS  Google Scholar 

  36. Qian R. Several basic questions on the cohesional state of polymers. Special propositions of polymer chemistry and physics. Guangzhou: Zhongshan University Press; 1984. p. 139.

    Google Scholar 

  37. Qian R, Wu L, Shen D, Napper HD, Mann RA, Sangster DF. Single-chain polystyrene glasses. Macromolecules. 1993;26(11):2950–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (50773065), Sichuan Prominent Young Talent Program (08ZQ026-040) and Scientific Research Project of Sichuan Provincial Health Department (090177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Wang, L., Huang, M. et al. A shape memory stent of poly(ε-caprolactone-co-dl-lactide) copolymer for potential treatment of esophageal stenosis. J Mater Sci: Mater Med 23, 581–589 (2012). https://doi.org/10.1007/s10856-011-4475-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4475-4

Keywords

Navigation