Skip to main content
Log in

Au/TiO2/Graphene Composite with Enhanced Photocatalytic Activity Under Both UV and Visible Light Irradiation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Au/TiO2/graphene composite was synthesized by the combination of electrostatic attraction and photo-reduction method. In the composite, graphene sheets act as an adsorption site for dye molecules to provide a high concentration of dye near to the TiO2 and Au nanoparticles (NPs), and work as an excellent electron transporter to separate photoinduced e /h + pairs. Under UV irradiation, photogenerated electrons of TiO2 are transferred effectively to Au NPs and graphene sheets, respectively, retarding the recombination of electron–hole pairs. Under visible light irradiation, the Au NPs are photo-excited due to the surface plasmon resonance effect, and charge separation is accomplished by the interfacial electron injection from the Au NPs to the conduction band of TiO2 and then transfer further to graphene sheets. As a result, compared with pure TiO2, Au/TiO2/graphene composite exhibited much higher photocatalytic activity for degradation of methylene blue under both UV and visible light irradiation, based on the synergistic effect of Au, graphene in contact with TiO2, allowing response to the visible light, effective separation of photoinduced charges, and better adsorption of the dye molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Azarian (2015). J. Clust. Sci. 26, 1607.

    Article  CAS  Google Scholar 

  2. H. X. Wang and W. Wang (2016). J. Clust. Sci. 27, 403.

    Article  CAS  Google Scholar 

  3. J. R. Chen, F. X. Qiu, W. Z. Xu, S. S. Cao, and H. J. Zhu (2015). Appl. Catal. A 495, 131.

    Article  CAS  Google Scholar 

  4. X. Chen and S. S. Mao (2007). Chem. Rev. 107, 2891.

    Article  CAS  Google Scholar 

  5. W. Choi, A. Termin, and M. R. Hoffmann (1994). J. Phys. Chem. 98, 13669.

    Article  Google Scholar 

  6. Y. Zhang, Z. Y. Zhao, J. R. Chen, L. Cheng, J. Chang, W. C. Sheng, C. Y. Hu, and S. S. Cao (2015). Appl. Catal. B 165, 715.

    Article  CAS  Google Scholar 

  7. S. Hoang, S. Guo, N. T. Hahn, A. J. Bard, and C. B. Mullins (2012). Nano Lett. 12, 26.

    Article  CAS  Google Scholar 

  8. K. Kadzioła, I. Piwonski, A. Kisielewska, D. Szczukocki, B. Krawczyk, and J. Sielski (2014). Appl. Surf. Sci. 288, 503.

    Article  Google Scholar 

  9. D. M. Tobaldi, R. C. Pullar, M. Leoni, M. P. Seabra, and J. A. Labrinchaa (2013). Appl. Surf. Sci. 287, 276.

    Article  CAS  Google Scholar 

  10. J. Gong (2012). Chem. Rev. 112, 2987.

    Article  CAS  Google Scholar 

  11. X. M. Zhou, G. Liu, J. G. Yu, and W. H. Fan (2012). J. Mater. Chem. 22, 21337.

    Article  CAS  Google Scholar 

  12. Y. Wen, B. T. Liu, W. Zeng, and Y. H. Wang (2013). Nanoscale 5, 9739.

    Article  CAS  Google Scholar 

  13. F. L. Su, T. Wang, R. Lv, J. J. Zhang, P. Zhang, J. W. Lu, and J. L. Gong (2013). Nanoscale 5, 9001.

    Article  CAS  Google Scholar 

  14. J. Sá, M. Fernández-García, and J. A. Anderson (2008). Catal. Commun. 9, 1991.

    Article  Google Scholar 

  15. Y. Liu, L. F. Chen, J. C. Hu, J. L. Li, and R. Richards (2010). J. Phys. Chem. C 114, 1641.

    Article  CAS  Google Scholar 

  16. X. D. Wang and R. A. Caruso (2011). J. Mater. Chem. 21, 20.

    Article  Google Scholar 

  17. E. Kowalska, O. O. P. Mahaney, R. Abe, and B. Ohtani (2010). Phys. Chem. Chem. Phys. 12, 2344.

    Article  CAS  Google Scholar 

  18. A. K. Geim (2009). Science 324, 1530.

    Article  CAS  Google Scholar 

  19. M. J. Allen, V. C. Tung, and R. B. Kaner (2010). Chem. Rev. 110, 132.

    Article  CAS  Google Scholar 

  20. Z. Liu, J. T. Robinson, X. M. Sun, and H. J. Dai (2008). J. Am. Chem. Soc. 130, 10876.

    Article  CAS  Google Scholar 

  21. T. W. Lu, R. B. Zhang, C. Y. Hu, F. Chen, S. W. Duo, and Q. H. Hu (2013). Phys. Chem. Chem. Phys. 15, 12963.

    Article  CAS  Google Scholar 

  22. C. Y. Hu, F. Chen, T. W. Lu, C. J. Lian, S. Z. Zheng, Q. H. Hu, S. W. Duo, and R. B. Zhang (2014). Appl. Sur. Sci. 317, 648.

    Article  CAS  Google Scholar 

  23. H. Zhang, X. J. Lv, Y. M. Li, Y. Wang, and J. H. Li (2010). ACS Nano. 4, 380.

    Article  CAS  Google Scholar 

  24. Y. H. Zhang, Z. R. Tang, X. Z. Fu, and Y. J. Xu (2010). ACS Nano. 4, 7303.

    Article  CAS  Google Scholar 

  25. C. Y. Hu, T. W. Lu, F. Chen, and R. B. Zhang (2013). J. Chin. Adv. Mater. Soc. 1, 21.

    Article  CAS  Google Scholar 

  26. Y. J. Wang, R. Shi, J. Lin, and Y. F. Zhu (2010). Appl. Catal. B 100, 179.

    Article  CAS  Google Scholar 

  27. Y. Wang, J. G. Yu, W. Xiao, and Q. Li (2014). J. Mater. Chem. A. 2, 3847.

    Article  CAS  Google Scholar 

  28. M. Selim Arif Sher Shah, K. Zhang, A. Reum Park, K. S. Kim, N. G. Park, J. H. Park, and J. H. Yoo (2013). Nanoscale 5, 5093.

    Article  Google Scholar 

  29. P. H. Wang, Y. X. Tang, Z. L. Dong, Z. Chen, and T. T. Lim (2013). J. Mater. Chem. A 1, 4718.

    Article  CAS  Google Scholar 

  30. W. Y. Gao, M. Q. Wang, C. X. Ran, X. Yao, H. H. Yang, J. Liu, D. L. He, and J. B. Bai (2014). Nanoscale 6, 5498.

    Article  CAS  Google Scholar 

  31. Y. Y. Wen, H. M. Ding, and Y. K. Shan (2011). Nanoscale 3, 4411.

    Article  CAS  Google Scholar 

  32. L. L. Tan, W. J. Ong, S. P. Chai, and A. R. Mohamed (2015). Appl. Catal. B 166–167, 251.

    Article  Google Scholar 

  33. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace (2008). Nat. Nanotechnol. 3, 101.

    Article  CAS  Google Scholar 

  34. T. G. Xu, L. W. Zhang, H. Y. Cheng, and Y. F. Zhu (2011). Appl. Catal. B 101, 382.

    Article  CAS  Google Scholar 

  35. P. A. DeSario, J. J. Pietron, D. E. DeVantier, T. H. Brintlinger, R. M. Stroud, and D. R. Rolison (2013). Nanoscale 5, 8073.

    Article  CAS  Google Scholar 

  36. Q. J. Xiang, J. G. Yu, and M. Jaroniec (2011). Nanoscale 3, 3670.

    Article  CAS  Google Scholar 

  37. F. Schedin, A. K. Geim, S. V. Morozov, E. M. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov (2007). Nat. Mater. 6, 652.

    Article  CAS  Google Scholar 

  38. A. Tanaka, K. Fuku, T. Nishi, K. Hashimoto, and H. Kominami (2013). J. Phys. Chem. C 117, 16983.

    Article  CAS  Google Scholar 

  39. J. Liu, C. Y. Hu, J. K. Xu, F. X. Jiang, and F. Chen (2014). Mater. Lett. 134, 134.

    Article  CAS  Google Scholar 

  40. Y. Tian and T. Tatsuma (2005). J. Am. Chem. Soc. 127, 7632.

    Article  CAS  Google Scholar 

  41. L. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh, and M. Tachiya (2009). J. Phys. Chem. C 113, 6454.

    Article  CAS  Google Scholar 

  42. M. S. A. Sher Shah, A. R. Park, K. Zhang, J. H. Park, and P. J. Yoo (2012). ACS Appl. Mater. Interfaces. 4, 2107.

    Article  Google Scholar 

  43. O. Akhavan, M. Abdolahad, A. Esfandiar, and M. Mohatashamifar (2010). J. Phys. Chem. C 114, 12955.

    Article  CAS  Google Scholar 

  44. H. Liu, X. N. Dong, X. C. Wang, C. C. Sun, J. Q. Li, and Z. F. Zhu (2013). Chem. Eng. J. 230, 279.

    Article  CAS  Google Scholar 

  45. P. Wang, Y. M. Zhai, D. J. Wang, and S. J. Dong (2011). Nanoscale 3, 1636.

    Google Scholar 

  46. W. Wang, C. H. Lu, Y. R. Ni, and Z. Z. Xu (2013). Appl. Catal. B 129, 606.

    Article  CAS  Google Scholar 

  47. S. Y. Zhu, S. J. Liang, Q. Gu, L. Y. Xie, J. X. Wang, Z. X. Ding, and P. Liu (2012). Appl. Catal. B 119–120, 146.

    Article  Google Scholar 

  48. N. Kruse and S. Chenakin (2011). Appl. Catal. A 391, 367.

    Article  CAS  Google Scholar 

  49. Y. H. Tang, S. L. Luo, Y. R. Teng, C. B. Liu, X. L. Xu, X. L. Zhang, and L. Chen (2012). J. Hazard. Mater. 241–242, 323.

    Article  Google Scholar 

  50. X. Wang, L. J. Zhi, and K. Mullen (2008). Nano Lett. 8, 323.

    Article  CAS  Google Scholar 

  51. A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya (2007). J. Am. Chem. Soc. 129, 14852.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks for the support of National Natural Science Foundation of China (No. 21163008), Jiangxi Collaborative Innovation Center for in vitro diagnostic reagents and instruments, Natural Science Foundation of Jiangxi Province (No. 20114BAB203009), and Scientific & Technological Project of Jiangxi Science and Technology Normal University (No. 2015CXTD003, No. 300098010203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyuan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, F., Lian, C. et al. Au/TiO2/Graphene Composite with Enhanced Photocatalytic Activity Under Both UV and Visible Light Irradiation. J Clust Sci 27, 1877–1892 (2016). https://doi.org/10.1007/s10876-016-1049-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1049-0

Keywords

Navigation