Skip to main content
Log in

A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a novel finite element method for the Stokes problem on fictitious domains. We prove inf-sup stability, optimal order convergence and uniform boundedness of the condition number of the discrete system. The finite element formulation is based on a stabilized Nitsche method with ghost penalties for the velocity and pressure to obtain stability in the presence of small cut elements. We demonstrate for the first time the applicability of the Nitsche fictitious domain method to three-dimensional Stokes problems. We further discuss a general, flexible and freely available implementation of the method and present numerical examples supporting the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alnæs, M.S., Logg, A., Mardal, K.-A.: UFC: A Finite Element Code Generation Interface, Volume 84 of Lecture Notes in Computational Science and Engineering, chapter 16. Springer, Berlin (2012)

  2. Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans. Math. Softw. (2013). http://arxiv.org/abs/1211.4047. To appear

  3. Barth, T., Bochev, P., Gunzburger, M., Shadid, J.: A taxonomy of consistently stabilized finite element methods for the Stokes problem. SIAM J. Numer. Anal. 25(5), 1585 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Becker, R., Burman, E., Hansbo, P.: A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Eng. 198(41–44), 3352–3360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, Berlin (2008)

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Volume 15 of Springer Series in Computational Mathematics. Springer, New York (1991)

  8. Burman, E.: Ghost penalty. Comptes Rendus Mathematique 348(21–22), 1217–1220 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 1–350 (2012)

    Google Scholar 

  10. Burman, E., Hansbo, P.: Fictitious domain methods using cut elements: III. A stabilized nitsche method for stokes problem. ESAIM, Math. Model. Numer. Anal. 348(21–22), 19 (2013)

    Google Scholar 

  11. Cgal, Computational Geometry Algorithms Library, software package. http://www.cgal.org

  12. Ern, A., Guermond, J.L.: Evaluation of the condition number in linear systems arising in finite element approximations. ESAIM Math. Model. Num. Anal 40(1), 29–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franca, L.P., Hughes, T.J.R., Stenberg, R.: Stabilized finite element methods for the Stokes problem. In: Gunzburger, M.D., Nicolaides, R.A. (eds.) Incompressible Computational Fluid Dynamics. Cambridge University Press, Cambridge, MA (1993)

    Google Scholar 

  14. Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74(249), 53–84 (2005)

    Article  MATH  Google Scholar 

  15. Glowinski, R., Kuznetsov, Y.: Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput. Methods Appl. Mech. Eng. 196(8), 1498–1506 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. gts, GNU Triangulated Surface Library, software package. http://gts.sourceforge.net/

  18. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Isaksen, J.G., Bazilevs, Y., Kvamsdal, T., Zhang, Y., Kaspersen, J.H., Waterloo, K., Romner, B., Ingebrigtsen, T.: Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39(12), 3172 (2008)

    Article  Google Scholar 

  22. Johansson, A. and Larson, M. G.: A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math. 123(4), 607–628 (2013)

    Google Scholar 

  23. Kechkar, N., Silvester, D.: Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58(197), 1 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw. 32(3), 417–444 (2006)

    Article  MathSciNet  Google Scholar 

  25. Logg, A.: Automating the finite element method. Arch. Comput. Methods Eng. 14(2), 93–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  27. Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans. Math. Softw. 37(2), 1–750 (2010)

    Google Scholar 

  28. Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: FFC: The FEniCS Form Compiler, chapter 11. Springer, Berlin (2012)

    Google Scholar 

  29. Massing, A., Larson, M.G., Logg, A.: Efficient implementation of finite element methods on non-matching and overlapping meshes in 3D. SIAM J. Sci. Comput. 35(1), C23–C47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Massing, A., Larson, M. G., Logg, A., Rognes, M. E.: A stabilized Nitsche overlapping mesh method for the Stokes problem. Numer Math. (2014). doi:10.1007/s00211-013-0603-z

  31. Quarteroni, A.: Numerical Models for Differential Problems. Modeling, Simulation and Applications. Springer, Berlin (2009)

    Book  Google Scholar 

  32. Scott, R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  34. Steinman, D.A., Milner, J.S., Norley, C.J., Lownie, S.P., Holdsworth, D.W.: Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR. Am. J. Neuroradiol. 24(4), 559–66 (2003). http://www.ncbi.nlm.nih.gov/pubmed/12695182

  35. Valen-Sendstad, K., Mardal, K.-A., Mortensen, M., Reif, B.A.P., Langtangen, H.P.: Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J. Biomech. 44(16), 2826–2832, (2011). doi:10.1016/j.jbiomech.2011.08.015. http://www.ncbi.nlm.nih.gov/pubmed/21924724

  36. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50(1), 67–83 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yu, Z.: A DLM/FD method for fluid/flexible-body interactions. J. Comput. Phys. 207(1), 1–27 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Sebastian Warmbrunn for providing the surface geometry used in Sect. 8.4 and Kent-Andre Mardal for insightful discussion on preconditioning. This work is supported by an Outstanding Young Investigator grant from the Research Council of Norway, NFR 180450. This work is also supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical Computing at Simula Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Massing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massing, A., Larson, M.G., Logg, A. et al. A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem. J Sci Comput 61, 604–628 (2014). https://doi.org/10.1007/s10915-014-9838-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9838-9

Keywords

Mathematics Subject Classification

Navigation