Skip to main content
Log in

Analysis of Fully Discrete Approximations for Dissipative Systems and Application to Time-Dependent Nonlocal Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we first present stability and error analysis of the fully discrete numerical schemes for general dissipative systems, in which the implicit Runge–Kutta (IRK) method is adopted for time integration. Under suitable conditions on the IRK time stepping method that we refer as the total stability, a priori error estimates can be simultaneously obtained. Then we apply such time-marching techniques and analysis framework to one-dimensional time-dependent nonlocal diffusion problems, together with the discontinuous Galerkin method being used for spatial discretization. Unconditional stability of approximations of both primal and auxiliary variables and the priori error estimates for the corresponding fully discrete systems are proved, and the results indicate the schemes are asymptotically compatible. In addition, long time asymptotic behavior of the approximate solutions is also investigated. Various numerical experiments are finally performed to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bates, P.W., Chmaj, A.: An integrodifferential model for phase transitions: stationary solutions in higher space dimensions. J. Stat. Phys. 95, 1119–1139 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, London (2008)

    Book  MATH  Google Scholar 

  3. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  4. Cheng, Y., Zhang, Q.: Local analysis of local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularity perturbed problem. J. Sci. Comput. 72, 1–28 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cheng, Y., Zhang, Q.: Local analysis of the fully discrete local discontinuous Galerkin method for the time-dependent singularly perturbed problem. J. Comput. Math. 35, 265–288 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crouzeix, M., Hundsdorfer, W.H., Spijker, M.N.: On the existence of solutions to the algebraic equations in implicit Runge–Kutta methods. BIT Numer. Math. 23, 84–91 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III: One dimensional systems. J. Computat. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws. II: General framework. Math. Comput. 52, 411–435 (1989)

    MATH  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin finite element method for conservation laws. V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dekker, K.: Error bounds for the solution to the algebraic equations in Runge–Kutta methods. BIT Numer. Math. 24, 347–356 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Q., Ju, L., Lu, J.: A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems. Math. Comput. (2017). https://doi.org/10.1090/mcom/3333

    MATH  Google Scholar 

  15. Du, Q., Ju, L., Tian, L., Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comput. 82, 1889–1922 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, Q., Yang, J.: Asymptotically compatible Fourier spectral approximations of nonlocal Allen–Cahn equations. SIAM J. Numer. Anal. 54, 1899–1919 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eftimie, R., De Vries, G., Lewis, M.A.: Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci. 104, 6974–6979 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 40, 211–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fife, P.: Some nonclassical trends in parabolic and parabolic-like evolutions. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds.) Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

    Chapter  Google Scholar 

  21. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, New York (1993)

    MATH  Google Scholar 

  25. Hochbruck, M., Pažur, T.: Implicit Runge–Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations. SIAM J. Numer. Anal. 53, 485–507 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, New York (1991)

    Book  MATH  Google Scholar 

  27. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59, 373–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luo, J., Shu, C.-W., Zhang, Q.: A priori error estimates to smooth solutions of the third order Runge–Kutta discontinuous Galerkin method for symmetrizable system of conservation laws. Math. Model. Numer. Anal. 49, 991–1018 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Levy, D., Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method. SIAM Rev. 40, 40–73 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rosasco, L., Belkin, M., Vito, E.D.: On learning with integral operators. J. Mach. Learn. Res. 11, 905–934 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  33. Sun, Z., Shu, C.-W.: Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations. Ann. Math. Sci. Appl. 2, 255–284 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method. II. In: Estep, D., Tavener, S. (eds.) Collected Lectures on the Preservation Of Stability Under Discretization, Proceedings of the Workshop on the Preservation of Stability Under Discretization, Colorado State University, Fort Collins, CO (2001); Proceedings in Applied Mathematics, vol. 109, pp. 25–49. SIAM (2002)

  35. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, X., Du, Q.: Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52, 1641–1665 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, X., Du, Q.: Nonconforming discontinuous Galerkin methods for nonlocal variational problems. SIAM J. Numer. Anal. 53, 762–781 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tian, H., Ju, L., Du, Q.: Nonlocal convection–diffusion problems and finite element approximations. Comput. Methods Appl. Mech. Eng. 289, 60–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227, 472–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Q., Shu, C.-W.: Error estimates to smooth solution of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimate to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfang Lu.

Additional information

Qiang Du’s work is partially supported by US National Science Foundation Grant DMS-1719699, US AFOSR MURI Center for Material Failure Prediction Through Peridynamics, and US Army Research Office MURI Grant W911NF-15-1-0562. Lili Ju’s research is partially supported by US National Science Foundation Grant DMS-1521965. Jianfang Lu’s work is partially supported by Postdoctoral Science Foundation of China Grant 2017M610749, and Natural Science Foundation of China Grants 11771035 and U153040.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Ju, L. & Lu, J. Analysis of Fully Discrete Approximations for Dissipative Systems and Application to Time-Dependent Nonlocal Diffusion Problems. J Sci Comput 78, 1438–1466 (2019). https://doi.org/10.1007/s10915-018-0815-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0815-6

Keywords

Mathematics Subject Classification

Navigation