Skip to main content
Log in

A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Dealloying is a useful approach to producing micro/nanoporous metallic materials and has been applied to the synthesis of porous noble metals such as Au, Ag, Pt and Pd from various forms of precursor materials (e.g. amorphous, solid solution, or intermetallic compound). This study shows that dealloying can also be used to fabricate porous non-noble metals like tin (Sn) from immiscible Al–Sn alloys of Al80Sn20, Al65Sn35 and Al50Sn50 (in at.% throughout the paper). The as-dealloyed porous Sn samples showed a three-dimensionally continuous porous structure throughout each sample and sufficient mechanical integrity for assembly in lithium ion battery cells as anodes. The average pore size depends on the size of the Al phase in each precursor alloy and falls in the range of 1.58 ± 0.26 to 4.09 ± 0.85 μm with respect to the three precursor alloys used. The resulting porous Sn structures can be controlled through changing the microstructure of the precursor alloy. The as-dealloyed porous Sn anode showed an outstanding initial charging-discharging capacity and a high coulombic efficiency in lithium ion battery performance tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci. 4, 3287 (2011)

    Article  CAS  Google Scholar 

  2. W.J. Zhang, J. Power Sources 196, 13 (2011)

    Article  CAS  Google Scholar 

  3. H.C. Shin, M. Liu, Adv. Funct. Mater. 15, 582 (2005)

    Article  CAS  Google Scholar 

  4. L. Huang, Y. Yang, L.J. Xue, H.-B. Wei, F.S. Ke, J.T. Li, S.G. Sun, Electrochem. Commun. 11, 6 (2009)

    Article  CAS  Google Scholar 

  5. A.D.W. Todd, P.P. Ferguson, J.G. Barker, M.D. Fleischauer, J.R. Dahn, J. Electrochem. Soc. 156, A1034 (2009)

    Article  CAS  Google Scholar 

  6. N. Li, C.R. Martin, J. Electrochem. Soc. 148, A164 (2001)

    Article  CAS  Google Scholar 

  7. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410, 450 (2001)

    Article  CAS  Google Scholar 

  8. J. Biener, A.M. Hodge, A.V. Hamza, Appl. Phys. Lett. 87, 121908 (2005)

    Article  Google Scholar 

  9. T. Song, Y. Gao, Z. Zhang, Q. Zhai, CrystEngComm 13, 7058 (2011)

    Article  CAS  Google Scholar 

  10. C. Xu, Y. Zhang, L. Wang, L. Xu, X. Bian, H. Ma, Y. Ding, Chem. Mater. 21, 3110 (2009)

    Article  CAS  Google Scholar 

  11. A. Abburi, N. Abrams, W. Yeh, J. Porous Mater. 19, 543 (2012)

    Article  CAS  Google Scholar 

  12. O.M. Surez, E.G. Estremera, R. Soler, A. Declet, A.J. Hernndez-Maldonado, Adv. Mater. Sci. Eng. 2014, 1 (2014)

    Article  Google Scholar 

  13. J.C. Thorp, K. Sieradzki, L. Tang, P.A. Crozier, A. Misra, M. Nastasi, D. Mitlin, S.T. Picraux, Appl. Phys. Lett. 88, 033110 (2006)

    Article  Google Scholar 

  14. I.C. Cheng, A.M. Hodge, J. Porous Mater. 21, 467 (2014)

    Article  CAS  Google Scholar 

  15. M. Li, Y. Zhou, H. Geng, J. Porous Mater. 19, 791 (2012)

    Article  CAS  Google Scholar 

  16. A.J. McAlister, D.J. Kahan, Bull. Alloy Phase Diagr. 4, 410 (1983)

    Article  Google Scholar 

  17. Q. Zhang, Z. Zhang, Phys. Chem. Chem. Phys. 12, 1453 (2010)

    Article  CAS  Google Scholar 

  18. A.M. Russel, K.L. Lee, Si, Ge, Sn and Pb, Structure-Property Relations in Nonferrous Metals (Wiley, New Jersey, 2005), pp. 392–418

    Book  Google Scholar 

  19. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276, 1395 (1997)

    Article  CAS  Google Scholar 

  20. Z. Zhang, Y. Wang, Y. Wang, J. Nanosci. Nanotechnol. 13, 1503 (2013)

    Article  CAS  Google Scholar 

  21. T. Song, M. Yan, Z. Shi, A. Atrens, M. Qian, Electrochim. Acta 164, 288 (2015)

    Article  CAS  Google Scholar 

  22. S. Parida, D. Kramer, C.A. Volkert, H. Rösner, J. Erlebacher, J. Weissmüller, Phys. Rev. Lett. 97, 035504 (2006)

    Article  CAS  Google Scholar 

  23. M. Winter, J. Besenhard, Electrochim. Acta 45, 31 (1999)

    Article  CAS  Google Scholar 

  24. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)

    Article  CAS  Google Scholar 

  25. K. Nishikawa, K. Dokko, K. Kinoshita, S.W. Woo, K. Kanamura, J. Power Sources 189, 726 (2009)

    Article  CAS  Google Scholar 

  26. B.D. Polat, N. Sezgin, O. Keles, K. Kazmanlı, J. Alloys Compd. 553, 204 (2013)

    Article  CAS  Google Scholar 

  27. J. Hassoun, S. Panero, P. Simon, P.L. Taberna, B. Scrosati, Adv. Mater. 19, 1632 (2007)

    Article  CAS  Google Scholar 

  28. H. Zhao, C.Y. Jiang, X. He, J. Ren, J. Power Sources 184, 532 (2008)

    Article  CAS  Google Scholar 

  29. X.Y. Fan, Q.C. Zhuang, G.Z. Wei, L. Huang, Q.F. Dong, S.G. Sun, J. Appl. Electrochem. 39, 1323 (2009)

    Article  CAS  Google Scholar 

  30. G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. 19, 2336 (2007)

    Article  CAS  Google Scholar 

  31. J. Hassoun, G. Derrien, S. Panero, B. Scrosati, Adv. Mater. 20, 3169 (2008)

    Article  CAS  Google Scholar 

  32. D.H. Nam, R.H. Kim, C.L. Lee, H.S. Kwon, J. Electrochem. Soc. 159, A1822 (2012)

    Article  CAS  Google Scholar 

  33. R. Hu, M. Zeng, C.Y.V. Li, M. Zhu, J. Power Sources 188, 268 (2009)

    Article  CAS  Google Scholar 

  34. R. Hu, Q. Shi, H. Wang, M. Zeng, M. Zhu, J. Phys. Chem. C 113, 18953 (2009)

    Article  CAS  Google Scholar 

  35. L. Huang, H.B. Wei, F.-S. Ke, X.Y. Fan, J.T. Li, S.G. Sun, Electrochim. Acta 54, 2693 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T. Song acknowledges the support of the China Scholarship Council (CSC) for a CSC PhD Scholarship and the support of RMIT University for a fee waiver scholarship. The battery performance tests were carried out in the College of Materials Science and Engineering of Sichuan University, China. The authors thank Professor Yungui Chen for the provision of the experimental facilities. Useful comments and suggestions from the reviewers are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Yan, M. & Qian, M. A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode applications. J Porous Mater 22, 713–719 (2015). https://doi.org/10.1007/s10934-015-9944-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9944-6

Keywords

Navigation