Skip to main content
Log in

Aerogel-based thermal superinsulation: an overview

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This review is focused on describing the intimate link which exists between aerogels and thermal superinsulation. For long, this applied field has been considered as the most promising potential market for these nanomaterials. Today, there are several indicators suggesting that this old vision is likely to become reality in the near future. Based on recent developments in the field, we are confident that aerogels still offer the greatest potential for non-evacuated superinsulation systems and consequently must be considered as an amazing opportunity for sustainable development. The practical realization of such products however is time-consuming and a significant amount of R&D activities are still necessary to yield improved aerogel-based insulation products for mass markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Barsky RB, Kilian L (2004) Oil and the macroeconomy since the 1970s. J Econ Persp 18(4):115–134

    Article  Google Scholar 

  2. Woodwell GM (1978) The carbon dioxide question. Sci Am 238:34–43

    Article  CAS  Google Scholar 

  3. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell I (2000) Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  Google Scholar 

  4. Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change—the IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  5. Caldeira K, Jain AK, Hoffert MI (2003) Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299(5615):2052–2054

    Article  CAS  Google Scholar 

  6. Weber L (1997) Some reflections on barriers to the efficient use of energy. Energy Policy 25(10):833–835

    Article  Google Scholar 

  7. Aegerter MA, Leventis N, Koebel MM (eds) (2011) Aerogels handbook. Springer, Berlin

    Google Scholar 

  8. Janda KB, Busch JF (1994) Worldwide status of energy standards for buildings. Energy 19(1):27–44

    Article  Google Scholar 

  9. Papadopoulos AM (2005) State of the art in thermal insulation materials and aims for future developments. Energy Build 37(1):77–86

    Article  Google Scholar 

  10. Lee OJ, Lee KH, Yim TJ, Kim SY, Yoo KP (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids 298:287–292

    Article  CAS  Google Scholar 

  11. Viskanta R, Gosh RJ (1962) Heat transfer by simultaneous conduction and radiation in an absorbing medium. J Heat Trans 2:63–71

    Article  Google Scholar 

  12. Scheuerpflug P, Caps R, Büttner D, Fricke J (1985) Apparent thermal conductivity of evacuated SiO2 aerogel tiles under variations of radiative boundary conditions. Int J Heat Mass Transf 28:2299–2306

    Article  CAS  Google Scholar 

  13. Bernasconi A, Sleator T, Posselt D, Kjems JK, Ott HR (1992) Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements. Phys Rev B 45:10363–10376

    Article  CAS  Google Scholar 

  14. Vacher R, Woignier T, Pelous J (1988) Structure and self-similarity of silica aerogels. Phys Rev B 37:6500–6503

    Article  CAS  Google Scholar 

  15. Craievich A, Aegerter MA, dos Santos DI, Woignier T, Zarzycki J (1986) A SAXS study of silica aerogels. J Non-Cryst Solids 86:394–406

    Article  CAS  Google Scholar 

  16. Hasmy A, Foret M, Anglaret E, Pelous J, Vacher R, Jullien R (1995) Small-angle neutron scattering of aerogels: simulations and experiments. J Non-Cryst Solids 186:118–130

    Article  CAS  Google Scholar 

  17. Simmler H, Brunner S (2005) Aging and service life of VIP in buildings. Energy Build 37(11):1122–1131

    Article  Google Scholar 

  18. Manz H (2008) On minimizing heat transport in architectural glazing. Renewable Energy 33(1):119–128

    Article  Google Scholar 

  19. Koebel MM, Manz H, Meyerhofer KE, Keller B (2010) Service-life limitations in vacuum glazing: a transient pressure balance model. Sol Energy Mat Sol Cells 94:1015–1024

    Article  CAS  Google Scholar 

  20. Caps R, Heinemann U, Ehrmanntraut M, Fricke J (2001) Evacuated insulation panels filled with pyrogenic silica powders − properties and applications. High Temp High Press 33(2):151–156

    Article  CAS  Google Scholar 

  21. Koebel MM, El Hawi N, Lu J, Gattiker F, Neuenschwander J (2011) Anodic bonding of activated tin solder alloys in the liquid state: a novel large-area hermetic glass sealing method. Sol Energy Mat Sol Cells 95:3001–3008

    Article  CAS  Google Scholar 

  22. Freedonia market study #2434 (2009) Freedonia group. Cleveland, OH

  23. BCC market study #AVM052B (2009) BCC research Inc. Wellesley, MA

  24. Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE (1976) Inorganic oxide aerogels. Adv Colloid Interf Science 5:245–273

    Article  CAS  Google Scholar 

  25. Mehrotra MC (1992) Precursors for aerogels. J Non-Cryst Solids 145:1–10

    Article  CAS  Google Scholar 

  26. Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64

    Article  CAS  Google Scholar 

  27. Gao GM, Liu DR, Zou HF, Zou LC, Gan SC (2010) Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol 197(3):283–287

    Article  CAS  Google Scholar 

  28. Tang Q, Wang T (2005) Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying. J Supercritical Fluids 35(1):91–94

    Article  CAS  Google Scholar 

  29. Li T, Wang T (2008) Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure. Mater Chem Phys 112(2):398–401

    Article  CAS  Google Scholar 

  30. Shi F, Liu JX, Song K, Wang ZY (2010) Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying. J Non-Cryst Solids 356(43):2241–2246

    Article  CAS  Google Scholar 

  31. Baccile N, Babonneau F, Bejoy T, Coradin T (2010) Introducing ecodesign in silica sol-gel materials. J Mater Chem 19:8537–8559

    Article  Google Scholar 

  32. Rigacci A, Ehrburger-Dolle F, Geissler E et al (2001) Investigation of the multi-scale structure of silica aerogels by SAXS. J Non-Cryst Solids 285:187–193

    Article  CAS  Google Scholar 

  33. Di Bella G, Arrigo I, Catalfamo P, Corigliano F, Mavilia L (2003) Advances in the extraction of silica from glass cullet. Recycl Reuse Waste Mater Proc Int Symp 63719:137–142

    Google Scholar 

  34. Icopini GA, Brantley SL, Heaney PJ (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength. Geochim Cosmochim Acta 69(2):293–303

    Article  CAS  Google Scholar 

  35. West JK, Hench LL (1995) Molecular-orbital models of silica rings and their vibrational spectra. J. Am. Ceramic Soc 78(4):1093–1096

    Article  CAS  Google Scholar 

  36. Greenberg SA, Sinclair D (1955) The polymerization of silicic acid. J Phys Chem 59(5):435–440

    Article  CAS  Google Scholar 

  37. Allen LH, Matijevic E (1970) Stability of colloidal silica: II. Ion exchange. Interface Sci 33(3):420–429

    Article  Google Scholar 

  38. Grun M, Unger KK, Matsumoto A (1999) Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor Mesopor Mater 27(2–3):207–216

    Article  CAS  Google Scholar 

  39. Gross J, Fricke J, Hrubesh LW (1992) Sound-propagation in SiO2 aerogels. J Acoust Soc Am 91(4):2004–2006

    Article  Google Scholar 

  40. Ray SK, Maiti CK, Lahiri SK et al (1992) Properties of silicon dioxide films deposited at low-temperatures by microwave plasma enhanced decomposition of Tetraethylorthosilicate. J Vac Sci Technol, B 10(3):1139–1150

    Article  CAS  Google Scholar 

  41. Mackenzie JD, Bescher EP (1998) Structures, properties and potential applications of Ormosils. J Sol-Gel Sci Technol 13(1–3):371–377

    Article  CAS  Google Scholar 

  42. Yano S, Iwata K, Kurita K (1998) Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process. Mater Sci Eng C Biomim Supramol Syst 6(2–3):75–90

    Article  Google Scholar 

  43. Chen Y, Iroh JO (1999) Synthesis and characterization of polyimide silica hybrid composites. Chem Mater 11(5):1218–1222

    Article  CAS  Google Scholar 

  44. Liu RL, Shi YF, Wan Y et al (2006) Triconstituent Co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J Am Chem Soc 128(35):11652–11662

    Article  CAS  Google Scholar 

  45. Kelts LW, Effinger NJ, Melpolder SM (1986) Sol-gel chemistry studied by 1H and 29Si nuclear magnetic resonance, J. Non.-Cryst. Solids 83:353–374

    CAS  Google Scholar 

  46. Bernards TNM, Oomen EWJL, Vanbommel MJ, Boonstra AH (1992) The effect of TEOG on the hydrolysis condensation mechanism of a 2-step sol-gel process of TEOS. J Non-Cryst Solids 142(3):215–224

    Article  CAS  Google Scholar 

  47. Jada SS (1987) Study of tetraethyl orthosilicate hydrolysis by in situ generation of water. Comm Am Chem Soc 70(11):C298–C300

    CAS  Google Scholar 

  48. Aelion R, Loebel A, Eirich F (1950) Hydrolysis of ethyl silicate. J Am Chem Soc 72(12):5705–5712

    Article  CAS  Google Scholar 

  49. Belton DJ, Deschaume O, Patwardhan SV, Perry CC (2010) A solution study of silica condensation and speciation with relevance to in vitro investigations of biosilicification. J Phys Chem B 114(31):9947–9955

    Article  CAS  Google Scholar 

  50. Assink RA, Kay BD (1988) Sol-gel kinetics: I. Functional group kinetics. J Non Cryst Solids 99:359–370

    Article  CAS  Google Scholar 

  51. Assink RA, Kay BD (1988) Sol-gel kinetics: II. Chemical speciation modeling. J Non Cryst Solids 104:112–122

    Article  Google Scholar 

  52. Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) Sol-gel transition in simple silicates. J Non Cryst Solids 48:47–64

    Article  CAS  Google Scholar 

  53. Gurav JL, Nadargi DY, Rao AV (2008) Effect of mixed catalysts system on TEOS-based silica aerogels dried at ambient pressure. Appl Surf Sci 255(5):3019–3027

    Article  CAS  Google Scholar 

  54. Jarzebski AB, Lorenc J, Aristov YI, Lisitza N (1995) Porous texture characteristics of a homologous series of base-catalyzed silica aerogels. J Non-Cryst Solids 190(3):198–205

    Article  CAS  Google Scholar 

  55. Kesmez O, Kiraz N, Burunkaya E, Camurlu HE, Asilturk M, Arpac E (2010) Effect of amine catalysts on preparation of nanometric SiO2 particles and antireflective films via sol-gel method. J Sol-Gel Sci Technol 56(2):167–176

    Article  CAS  Google Scholar 

  56. Cao WQ, Hunt AJ (1994) Improving the visible transparency of silica aerogels. J Non-Cryst Solids 176(1):18–25

    Article  CAS  Google Scholar 

  57. Pajonk GM, Elaloui E, Achard P, Chevalier B, Chevalier JL, Durant M (1995) Physical properties of silica gels and aerogels prepared with new polymeric precursors. J Non-Cryst Solids 186:1–8

    Article  CAS  Google Scholar 

  58. Begag R (1996) Synthèse et propriétés physico-chimiques de carbogels de silice préparés par la méthode sol-gel (en catalyse acide) à partir de polyéthoxydisiloxanes. Ph D thesis Université de Lyon I (France)

  59. Schultz JM, Jensen KI, Kristiansen FH (2005) Super insulating aerogel glazing. Solar Mater Solar Cells 89:275–285

    Article  CAS  Google Scholar 

  60. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York, NY

    Google Scholar 

  61. Einarsrud M-A, Haereid S (1994) Preparation of transparent, monolithic silica xerogels with low density. J Sol-Gel Sci Technol 2(1–3):903–906

    Article  CAS  Google Scholar 

  62. Aravind PR, Shajesh P, Soraru GD, Warrier KG (2010) Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels. J Sol-Gel Sci Technol 54:105–117

    Article  CAS  Google Scholar 

  63. Pajonk GM (1989) Drying methods preserving the textural properties of gels. Rev Phys Appl 24(C4):13–22

    Google Scholar 

  64. Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Drying of silica gels to obtain aerogels : phenomenology and basic techniques, progress in drying technologies, vol 4,—special issue of Drying Technol 21(4): 593–628

  65. Iler RK (1979) The chemistry of silica. Wiley, New York NY

    Google Scholar 

  66. Calas S (1997) Surface et porosité dans les aérogels de silice: étude structurale et texturale. PhD thesis Université de Montpellier (France)

  67. Bisson A (2004) Synthèse et étude de matériaux nanostructurés à base de silice pour la superisolatuion thermique. PhD thesis Mines ParisTech (France)

  68. Hrubesh LW, Pekala RW (1994) Thermal properties of organic and inorganic aerogels. J Mater Res 9:731–738

    Article  CAS  Google Scholar 

  69. Deng Z, Wang J, Wu A, Shen J, Zhou B (1998) High strength SiO2 aerogel insulation. J Non-Cryst Solids 225:101–104

    Article  CAS  Google Scholar 

  70. Li L, Yalcin B, Nguyen BN, Meador MA, Cakmak M (2009) Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture and characterization. Appl Mater Interf 1(11):2491–2501

    Article  CAS  Google Scholar 

  71. Bisson A, Rigacci A, Lecomte D, Achard P (2004) Effective thermal conductivity of divided silica xerogels beds. J Non-Cryst Solids 350:379–384

    Article  CAS  Google Scholar 

  72. Buratti C, Moretti E (2011) Lighting and energetic characteristics of transparent insulating materials : experimental data and calculation. Indoor Build Environ 20(4):400–411

    Article  CAS  Google Scholar 

  73. Haereid S (1993) Preparation and characterization of transparent monolithic silica xerogels with low density. PhD thesis NTNU (Norway)

  74. Schwertfeger F, Frank D, Schmidt M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non-Cryst Solids 225:24–29

    Article  CAS  Google Scholar 

  75. Rao VA, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interf Sci 300:279–285

    Article  CAS  Google Scholar 

  76. Kartal AM, Erkey C (2010) Surface modification of silica aerogels by hexamethyldisilazane-carbon dioxide mixtures and their phase behavior. J Supercritical Fluids 53:115–120

    Article  CAS  Google Scholar 

  77. Smith DM, Deshpande R, Brinker CJ (1992) Preparation of low-density aerogels at ambient pressure. Mat Res Soc Symp Proc 271:567–572

    Article  CAS  Google Scholar 

  78. Hwang SW, Kim TY, Hyun SH (2008) Optimization of instantaneous solvent exchange/surface modification process for ambient synthesis of monolithic silica aerogels. J Colloid Interf Sci 322:224–230

    Article  CAS  Google Scholar 

  79. Reim M, Korner W, Manar J, Korder S, Ardini-Schuster M, Ebert HP, Fricke J (2005) Silica aerogel granulate material for thermal insulation and daylighting. Sol Energy 79(2):131–139

    Article  CAS  Google Scholar 

  80. Smith DM, Maskara A, Boes U (1998) Aerogel-based thermal insulation. J Non-Cryst Solids 225:254–259

    Article  CAS  Google Scholar 

  81. Woignier T, Phalippou J (1989) Scaling law variation of the mechanical properties of silica aerogels. Rev Phys Appl C4:179–184

    Google Scholar 

  82. Ryu J (2000) Flexible aerogel superinsulation and its manufacture. US Pat. # 6068882

  83. Trifu R, Bhobho N (2007) Flexible coherent insulating structures. US2007173157

  84. Chandradass J, Kang S, Bae D-S (2008) Synthesis of silica aerogel blanket by ambient drying method using waterglass based precursor and glass wool modified alumina sol. J Non-Cryst Solids 354:4115–4119

    Article  CAS  Google Scholar 

  85. Bardy ER, Mollendorf JC, Pendergast DR (2007) Thermal conductivity and compressive strain of aerogel insulation blankets under applied hydrostatic pressure. J Heat Transf 129:232–235

    Article  CAS  Google Scholar 

  86. Tang Y, Polli A, Bilgrien CJ, Young DR, Rhine WE, Gould GL (2007) Aerogel-foam composites. WO Pat. # 2007146945

  87. Lee JK (2007) Organic aerogls reinforced with inorganic fillers. US Pat. # 2007259979

  88. Ristic-Lehmann C, Farnworh B, Dutta A, Reis BE (2008) Aerogel/PTFE composite insulating material. US Pat. # 7349215 B2

  89. Mensahi J, Bauer U, Pothmann E, Peterson AA, Wilkins AK, Anton M, Doshi D, Dalzell W (2007) Aerogel based composites. WO Pat. # 2007047970

  90. Mackenzie JD, Chung YJ, Hu Y (1992) Rubbery ormosils and their applications. J Non-Cryst Solids 147&148:271–279

    Google Scholar 

  91. Ou DL, Gould GL (2005) Ormosil aerogels containing silicon bonded linear polymers. WO Pat. # 2005068361

  92. Ou DL, Gould GL, Stepanian CJ (2006) Ormosil aerogels containing silicon bonded polymethacrylate. WO Pat. # 2005098553

  93. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2008) Elastic organic-inorganic hybrid aerogels and xerogels. J Sol-Gel Sci Technol 48:172–181

    Article  CAS  Google Scholar 

  94. Capadona LA, Meador MA, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible, low-density polymer cross-linked silica aerogels. Polymer 47:5754–5761

    Article  CAS  Google Scholar 

  95. Leventis N, Mulik S, Wang X, Dass A, Patil VU, Sotiriou-Leventis C, Lu H, Churu G, Capecelatro A (2008) Polymer nano-encapsulation of template mesoporous silica monoliths with improved mechanical properties. J Non-Cryst Solids 354:632–644

    Article  CAS  Google Scholar 

  96. Randall JP, Meador MA, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace. ACS Appl Mater Interf 3:613–626

    Article  CAS  Google Scholar 

  97. Rhine WE, Ou, DL, Sonn JH (2007) Hybrid organic-inorganic materials and methods of preparing the same, WO Pat. # 2007126410

  98. Leventis N, Palczer A, McCorkle L (2005) Nanoengineered silica-polymer composite aerogels with no need for Supercritical fluid drying. J Sol-Gel Sci Technol 35:99–105

    Article  CAS  Google Scholar 

  99. Yang H, Kong X, Zhang Y, Wu C, Cao E (2011) Mechanical properties of polymer-modified silica aerogels dried under ambient pressure. J Non-Crystal Solids 357:3447–3453

    Article  CAS  Google Scholar 

  100. Pekala RW, Kong FM (1992) Resorcinol-formaldehyde aerogels and their carbonised derivatives. Polym Prepr 30:221–223

    Article  Google Scholar 

  101. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal conductivity of organic aerogels. J Non-Cryst Solids 188:226–234

    Article  CAS  Google Scholar 

  102. Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non-Cryst Solids 125:67–75

    Article  CAS  Google Scholar 

  103. Biesmans GL (1999) Polyisocyanate based aerogel. US Pat. # 5990184

  104. Biesmans G, Randall D, Francais E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance. J Non-Cryst Solids 225:36–40

    Article  CAS  Google Scholar 

  105. Rigacci A, Maréchal JC, Repoux M, Moreno M, Achard P (2004) Elaboration of aerogels and xerogels of polyurethane for thermal insulation. J Non-Cryst Solids 350:372–378

    Article  CAS  Google Scholar 

  106. Lee JK, Gould GK, Rhine W (2009) Polyurea based aerogel for high performance thermal insulation material. J Sol-Gel Sci Technol 49:209–220

    Article  CAS  Google Scholar 

  107. Egger CC, du Fresne C, Schmidt D, Yang J, Schädler V (2008) Design of highly porous melamine-based networks through a bicontinuous microemulsion templating strategy. J Sol-Gel Sci Technol 48:86–94

    Article  CAS  Google Scholar 

  108. du Fresne C, Schmidt DF, Egger C, Schädler V (2007) Supramolecular templating of organic xerogels. XVth international sol-gel conference, Montpellier, France, Sept 2–7, p 129

  109. Lee JK, Gould GL (2007) Polycyclopentadiene based aerogel: a new insulation material. J Sol-Gel Sci Technol 44:29–40

    Article  CAS  Google Scholar 

  110. Company website: http://www.airglass.se/

  111. Company website: http://www.basf.com

  112. Company website: http://www.hoechst.com

  113. Frisch G, Zimmermann A, Schwertfeger F (1997) Use of aerogels in agriculture. MX Pat. # 9706411

  114. Vukasovich MS (1970) Fluorescent pigment. GB Pat. # 1191483

  115. Company website: http://www.cabot-corp.com/aerogel

  116. Company website: http://www.aerogel.com/

  117. Company website: http://aerogel.en.gongchang.com/

  118. Company website: http://www.em-power.co.kr/

  119. Wang X-Y, Harpster G, Hunter J (2007) Nasa TM-report #214675

  120. Henning S (1985) Large-scal production of airglass. In: Fricke J (ed) Aerogels. Springer, Berlin, pp 39–41

    Google Scholar 

  121. Pajonk G, Elaloui E, Begag R, Durant M, Chevalier B, Chevalier JL, Achard P (1998) Process for the preparation of monolithic silica aerogels. US Pat. # 5795557

  122. Jensen KI, Kristiansen FH, Schultz JM (2005) Highly insulating and light transmitting aerogel glazing for super-insulating windows : HILI+ (European project ENK6-CT-2002-00648), Public final report

  123. Company website: http://www.scobalit.ch/

  124. Company website: http://www.birdair.com/

  125. Company website: http://www.okalux.de/

  126. Company website: http://www.rockwool.com/

  127. German product website: http://www.aerowolle.de/

  128. Stahl T, Brunner S, Zimmermann M, Ghazi Wakili K, (2011) Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications. Energy Build 44:114–117

    Google Scholar 

  129. Company website: http://www.fixit.ch

  130. Company website: http://www.parexlanko.com/

  131. Achard P, Rigacci A, Echantillac T, Bellet A, Aulaginer M, Daubresse A. Insulating silica xerogel plaster, International patent WO 2011/083174

  132. Ratke L (2008) Herstellung und Eigenschaften eines neuen Leichtbetons: Aerogelbeton. Beton- und Stahlbetonbau 103:236–243

    Article  Google Scholar 

  133. Company website: http://www.roefix.com

  134. Company website: http://sto.com/

  135. Savolainen K, Pylkkaenen L, Norppa H, Falck G, Lindberg H, Tuomi T, Vippola M, Alenius H, Brouwer D, Mark D, Bard D, Berges M, Jankowska E, Posniak M, Farmer P, Singh R, Krombach F (2008) Vision on safe nanoparticles and nanotechnologies: global and EU perspective. Nanosafety and REACH. Toxicol Lett 180:S21

  136. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Springer publishing and the main editors Michel Aegerter and Nicholas Leventis for their involvement in the Aerogels Handbook by which this review article was inspired. Also, the European Commission, the French Agency for Environment and Energy Management (ADEME), the French National Research Agency (ANR), the French „Fonds Unique Interministériel “(FUI) fund and ARMINES (The Contract Research Association of MINES Schools) for their financial support since the early nineties through different projects (like HILIT, HILIT+, PACTE Aerogels, ISOCOMP and NANO-PU), MINES ParisTech/ARMINES/CEMEF for SEM/TEM characterization support and last but not least, the industrials PCAS FIXIT/HASIT and PAREXLANKO as well as the French Scientific and Technical Centre for Building (CSTB) are warmly acknowledged for fruitful collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Koebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koebel, M., Rigacci, A. & Achard, P. Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol 63, 315–339 (2012). https://doi.org/10.1007/s10971-012-2792-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2792-9

Keywords

Navigation