Skip to main content
Log in

A flexible chaotic system with adjustable amplitude, largest Lyapunov exponent, and local Kaplan–Yorke dimension and its usage in engineering applications

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Designing and analyzing new chaotic systems with desired properties has gotten much interest recently. Through applying modification in a recent rare chaotic flow which has adjustable Kaplan–Yorke dimension, a flexible chaotic system is introduced in this work. In the mentioned modification, two parameters are added which can control amplitude of the attractor and largest Lyapunov exponent. Statistical and dynamical properties of such system could be discovered by applying stability analysis, estimating Lyapunov exponents, local Kaplan–Yorke dimension, and plots of state space. Interestingly, this system is in group of systems which have coexisting attractors, so it is a multistable chaotic system. By considering a practical application of this rare system, meaningful relation between the value of local Kaplan–Yorke dimension and the ability of the system as a random number generator can be seen in statistical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akgul, A., Calgan, H., Koyuncu, I., Pehlivan, I., Istanbullu, A.: Chaos-based engineering applications with a 3d chaotic system without equilibrium points. Nonlinear Dyn. 84(2), 481–495 (2016)

    Article  MathSciNet  Google Scholar 

  2. Akgul, A., Moroz, I., Pehlivan, I., Vaidyanathan, S.: A new four-scroll chaotic attractor and its engineering applications. Optik-Int. J. Light Electron Opt. 127(13), 5491–5499 (2016)

    Article  Google Scholar 

  3. Andrievskii, B., Fradkov, A.: Control of chaos: methods and applications. II. Applications. Automation Remote Control 65(4), 505–533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrievskii, B.R., Fradkov, A.L.: Control of chaos: methods and applications. I. Methods. Automation Remote Control 64(5), 673–713 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brummitt, C.D., Sprott, J.: A search for the simplest chaotic partial differential equation. Phys. Lett. A 373(31), 2717–2721 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carbajal-Gómez, V., Tlelo-Cuautle, E., Fernández, F., de la Fraga, L., Sánchez-López, C.: Maximizing Lyapunov exponents in a chaotic oscillator by applying differential evolution. Int. J. Nonlinear Sci. Numer. Simul. 15(1), 11–17 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chen, L., Chen, G.: Controlling chaos in an economic model. Phys. A 374(1), 349–358 (2007)

    Article  Google Scholar 

  8. Degn, H., Holden, A.V., Olsen, L.F.: Chaos in Biological Systems, vol. 138. Springer, Berlin (2013)

    Google Scholar 

  9. Fradkov, A.L., Progromsky, A.Y.: Introduction to Control of Oscillations and Chaos. World Scientific, Singapore (1998)

    Book  Google Scholar 

  10. de la Fraga, L.G., Tlelo-Cuautle, E.: Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators. Nonlinear Dyn. 76(2), 1503–1515 (2014)

    Article  Google Scholar 

  11. de la Fraga, L.G., Tlelo-Cuautle, E., Carbajal-Gómez, V., Munoz-Pacheco, J.: On maximizing positive Lyapunov exponents in a chaotic oscillator with heuristics. Revista mexicana de física 58(3), 274–281 (2012)

    Google Scholar 

  12. Gerencseer, L., Rásonyi, M., Szepesvári, C., Vágó, Z.: Log-optimal currency portfolios and control lyapunov exponents. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 1764–1769. IEEE (2005)

  13. Gotthans, T., Petržela, J.: New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81(3), 1143–1149 (2015)

    Article  MathSciNet  Google Scholar 

  14. Gottlieb, H., Sprott, J.: Simplest driven conservative chaotic oscillator. Phys. Lett. A 291(6), 385–388 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoover, W.G.: Remark on some simple chaotic flows. Phys. Rev. E 51(1), 759 (1995)

    Article  Google Scholar 

  16. Jafari, M.A., Mliki, E., Akgul, A., Pham, V.T., Kingni, S.T., Wang, X., Jafari, S.: Chameleon: the most hidden chaotic flow. Nonlinear Dyn. 83(3), 2303–2317 (2017)

  17. Jafari, S., Sprott, J., Molaie, M.: A simple chaotic flow with a plane of equilibria. Int. J. Bifurc. Chaos 26(06), 1650,098 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, vol. 7. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  19. Kapitaniak, T., Kocarev, L., Chua, L.O.: Controlling chaos without feedback and control signals. Int. J. Bifurc. Chaos 3(02), 459–468 (1993)

    Article  MATH  Google Scholar 

  20. Kaplan, J., Yorke, J.: Functional differential equations and approximation of fixed points. Lecture notes in mathematics, vol. 730, p. 228. Springer, Berlin (1979)

    Google Scholar 

  21. Kingni, S., Jafari, S., Simo, H., Woafo, P.: Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur. Phys. J. Plus 129(5), 1–16 (2014)

    Article  Google Scholar 

  22. Kingni, S.T., Pham, V.T., Jafari, S., Kol, G.R., Woafo, P.: Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits Syst. Signal Process. 35(6), 1933–1948 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Korn, H., Faure, P.: Is there chaos in the brain? II. experimental evidence and related models. C.R. Biol. 326(9), 787–840 (2003)

    Article  Google Scholar 

  24. Kuznetsov, N.: The lyapunov dimension and its estimation via the leonov method. Phys. Lett. A 380(25), 2142–2149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuznetsov, N., Leonov, G., Mokaev, T.: The Lyapunov dimension and its computation for self-excited and hidden attractors in the Glukhovsky-Dolzhansky fluid convection model. arXiv preprint arXiv:1509.09161 (2015)

  26. Kuznetsov, N., Mokaev, T., Vasilyev, P.: Numerical justification of Leonov conjecture on Lyapunov dimension of rossler attractor. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1027–1034 (2014)

    Article  MathSciNet  Google Scholar 

  27. Lao, S.K., Shekofteh, Y., Jafari, S., Sprott, J.C.: Cost function based on gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor. Int. J. Bifurc. Chaos 24(01), 1450,010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leonov, G., Kuznetsov, N., Kiseleva, M., Solovyeva, E., Zaretskiy, A.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77(1–2), 277–288 (2014)

    Article  Google Scholar 

  29. Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbit and hidden attractor in the lorenz-like system describing the fluid convection motion in the rotating cavity. arXiv preprint arXiv:1412.7667 (2014)

  30. Leonov, G., Kuznetsov, N., Mokaev, T.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28(1), 166–174 (2015)

    Article  MathSciNet  Google Scholar 

  31. Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421–1458 (2015)

    Article  Google Scholar 

  32. Leonov, G., Kuznetsov, N., Mokaev, T.: The Lyapunov dimension formula of self-excited and hidden attractors in the Glukhovsky-Dolzhansky system. arXiv preprint arXiv:1509.09161 (2015)

  33. Leonov, G., Kuznetsov, N., Vagaitsev, V.: Localization of hidden chuas attractors. Phys. Lett. A 375(23), 2230–2233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leonov, G., Kuznetsov, N., Vagaitsev, V.: Hidden attractor in smooth chua systems. Phys. D 241(18), 1482–1486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Leonov, G.A., Kuznetsov, N.V.: Analytical-numerical methods for hidden attractors localization: the 16th hilbert problem, aizerman and kalman conjectures, and chua circuits. In: Numerical Methods for Differential Equations, Optimization, and Technological Problems, pp. 41–64. Springer, Berlin (2013)

  36. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. from hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in chua circuits. Int. J. Bifurc. Chaos 23(01), 1330,002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224(8), 1493–1506 (2015)

    Article  Google Scholar 

  38. Li, C., Sprott, J.: Amplitude control approach for chaotic signals. Nonlinear Dyn. 73(3), 1335–1341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, C., Sprott, J.: Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78(3), 2059–2064 (2014)

    Article  MathSciNet  Google Scholar 

  40. Li, C., Sprott, J.C., Yuan, Z., Li, H.: Constructing chaotic systems with total amplitude control. Int. J. Bifurc. Chaos 25(10), 1530,025 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Munmuangsaen, B., Sprott, J.C., Thio, W.J.C., Buscarino, A., Fortuna, L.: A simple chaotic flow with a continuously adjustable attractor dimension. Int. J. Bifurc. Chaos 25(12), 1530,036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Patil, D., Hunt, B.R., Kalnay, E., Yorke, J.A., Ott, E.: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett. 86(26), 5878 (2001)

    Article  Google Scholar 

  43. Pham, V.T., Jafari, S., Volos, C., Vaidyanathan, S., Kapitaniak, T.: A chaotic system with infinite equilibria located on a piecewise linear curve. Optik-Int. J. Light Electron Opt. 127(20), 9111–9117 (2016)

    Article  Google Scholar 

  44. Pham, V.T., Vaidyanathan, S., Volos, C., Jafari, S., Kuznetsov, N., Hoang, T.: A novel memristive time-delay chaotic system without equilibrium points. Eur. Phys. J. Spec. Top. 225(1), 127–136 (2016)

    Article  Google Scholar 

  45. Pham, V.T., Volos, C., Jafari, S., Wang, X.: Generating a novel hyperchaotic system out of equilibrium. Optoelectron. Adv. Mater.-Rapid Commun 8(5–6), 535–539 (2014)

    Google Scholar 

  46. Posch, H.A., Hoover, W.G., Vesely, F.J.: Canonical dynamics of the nosé oscillator: stability, order, and chaos. Phys. Rev. A 33(6), 4253 (1986)

    Article  MathSciNet  Google Scholar 

  47. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78(4), 1213 (2006)

    Article  Google Scholar 

  48. Bassham III, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L., Heckert, N.A.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Special Publication (NIST SP), 800–22 Rev 1a, (2010)

  49. Sharma, P., Shrimali, M., Prasad, A., Kuznetsov, N., Leonov, G.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1485–1491 (2015)

    Article  Google Scholar 

  50. Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Controlling dynamics of hidden attractors. Int. J. Bifurc. Chaos 25(04), 1550,061 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sprott, J.: Some simple chaotic flows. Phys. Rev. E 50(2), R647 (1994)

    Article  MathSciNet  Google Scholar 

  52. Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68(8), 758–763 (2000)

    Article  Google Scholar 

  53. Sprott, J.C.: Simplest chaotic flows with involutional symmetries. Int. J. Bifurc. Chaos 24(01), 1450,009 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sprott, J.C.: Symmetric time-reversible flows with a strange attractor. Int. J. Bifurc. Chaos 25(05), 1550,078 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sprott, J.C., Linz, S.J.: Algebraically simple chaotic flows. Int. J. Chaos Theory Appl. 5(2), 1–20 (2000)

    Google Scholar 

  56. Tahir, F.R., Jafari, S., Pham, V.T., Volos, C., Wang, X.: A novel no-equilibrium chaotic system with multiwing butterfly attractors. Int. J. Bifurc. Chaos 25(04), 1550,056 (2015)

    Article  MathSciNet  Google Scholar 

  57. Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376(2), 102–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wei, Z., Sprott, J., Chen, H.: Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium. Phys. Lett. A 379(37), 2184–2187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Sajad Jafari and Atiyeh Bayani were supported by Iran National Science Foundation (No. 96000815). The work was supported by the Natural Science Foundation of China (No. 11726624), the Natural Science Basic Research Plan in Shandong Province of China (No. ZR2017PA008), Science and Technology Program of Xi’an (No. 2017134SF/WM028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Bayani, A., Akgul, A. et al. A flexible chaotic system with adjustable amplitude, largest Lyapunov exponent, and local Kaplan–Yorke dimension and its usage in engineering applications. Nonlinear Dyn 92, 1791–1800 (2018). https://doi.org/10.1007/s11071-018-4162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4162-9

Keywords

Navigation