Skip to main content

Advertisement

Log in

A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pinosylvin as a bioactive stilbene is of great interest for food supplements and pharmaceuticals development. In comparison to conventional extraction of pinosylvin from plant sources, biosynthesis engineering of microbial cell factories is a sustainable and flexible alternative method. Current synthetic strategies often require expensive phenylpropanoic precursor and inducer, which are not available for large-scale fermentation process. In this study, three bioengineering strategies were described to the development of a simple and economical process for pinosylvin biosynthesis in Escherichia coli. Firstly, we evaluated different construct environments to give a highly efficient constitutive system for enzymes of pinosylvin pathway expression: 4-coumarate: coenzyme A ligase (4CL) and stilbene synthase (STS). Secondly, malonyl coenzyme A (malonyl-CoA) is a key precursor of pinosylvin bioproduction and at low level in E. coli cell. Thus clustered regularly interspaced short palindromic repeats interference (CRISPRi) was explored to inactivate malonyl-CoA consumption pathway to increase its availability. The resulting pinosylvin content in engineered E. coli was obtained a 1.9-fold increase depending on the repression of fabD (encoding malonyl-CoA-ACP transacylase) gene. Eventually, a phenylalanine over-producing E. coli consisting phenylalanine ammonia lyase was introduced to produce the precursor of pinosylvin, trans-cinnamic acid, the crude extraction of cultural medium was used as supplementation for pinosylvin bioproduction. Using these combinatorial processes, 47.49 mg/L pinosylvin was produced from glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bhan N, Xu P, Khalidi O, Koffas MAG (2013) Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: proof of concept for genetic interventions predicted by OptForce computational framework. Chem Eng Sci 103:109–114. doi:10.1016/j.ces.2012.10.009

    Article  CAS  Google Scholar 

  • Conde E, Fang W, Hemming J et al (2014) Recovery of bioactive compounds from Pinus pinaster wood by consecutive extraction stages. Wood Sci Technol 48:311–323. doi:10.1007/s00226-013-0604-1

    Article  CAS  Google Scholar 

  • Holleley CE, Geerts PG (2009) Multiplex manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517. doi:10.2144/000113156

    Article  CAS  Google Scholar 

  • Huang Q, Lin Y, Yan Y (2013) Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng 110:3188–3196. doi:10.1002/bit.24988

    Article  CAS  Google Scholar 

  • Jancinova V, Perecko T, Nosal R et al (2012) The natural stilbenoid pinosylvin and activated neutrophils: effects on oxidative burst, protein kinase C, apoptosis and efficiency in adjuvant arthritis. Acta Pharmacol Sin 33:1285–1292. doi:10.1038/aps.2012.77

    Article  CAS  Google Scholar 

  • Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:7. doi:10.1186/1754-6834-7-7

    Article  Google Scholar 

  • Ji W, Lee D, Wong E et al (2014) Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth Biol 3:929–931. doi:10.1021/sb500036q

    Article  CAS  Google Scholar 

  • Jones KL, Kim SW, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2:328–338. doi:10.1006/mben.2000.0161

    Article  CAS  Google Scholar 

  • Katsuyama Y, Funa N, Horinouchi S (2007) Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli. Biotechnol J 2:1286–1293. doi:10.1002/biot.200700098

    Article  CAS  Google Scholar 

  • Kong J (2015) Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv 5:62587–62603. doi:10.1039/C5RA08196C

    Article  CAS  Google Scholar 

  • Koskela A, Reinisalo M, Hyttinen JMT et al (2014) Pinosylvin-mediated protection against oxidative stress in human retinal pigment epithelial cells. Mol Vis 20:760–769

    Google Scholar 

  • Laavola M, Nieminen R, Leppänen T et al (2015) Pinosylvin and monomethylpinosylvin, constituents of an extract from the knot of Pinus sylvestris, reduce inflammatory gene expression and inflammatory responses in vivo. J Agric Food Chem 63:3445–3453. doi:10.1021/jf504606m

    Article  CAS  Google Scholar 

  • Lentini R, Forlin M, Martini L et al (2013) Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology. ACS Synth Biol 2:482–489. doi:10.1021/sb400003y

    Article  CAS  Google Scholar 

  • Leonard E, Yan Y, Fowler ZL et al (2008) Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5:257–265. doi:10.1021/mp7001472

    Article  CAS  Google Scholar 

  • Lim CG, Fowler ZL, Hueller T et al (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460. doi:10.1128/AEM.02186-10

    Article  CAS  Google Scholar 

  • Lv L, Ren Y, Chen J et al (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29:1–9. doi:10.1016/j.ymben.2015.03.013

    Article  Google Scholar 

  • Na D, Yoo SM, Chung H et al (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174. doi:10.1038/nbt.2461

    Article  CAS  Google Scholar 

  • Park E-J, Park HJ, Chung H-J et al (2012) Antimetastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. J Nutr Biochem 23:946–952. doi:10.1016/j.jnutbio.2011.04.021

    Article  CAS  Google Scholar 

  • Park EJ, Chung HJ, Park HJ et al (2013) Suppression of Src/ERK and GSK-3/beta-catenin signaling by pinosylvin inhibits the growth of human colorectal cancer cells. Food Chem Toxicol 55:424–433. doi:10.1016/j.fct.2013.01.007

    Article  CAS  Google Scholar 

  • Qi L, Haurwitz RE, Shao W et al (2012) RNA processing enables predictable programming of gene expression. Nat Biotechnol 30:1002–1006. doi:10.1038/nbt.2355

    Article  CAS  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi:10.1016/j.cell.2013.02.022

    Article  CAS  Google Scholar 

  • Rivière C, Pawlus AD, Mérillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333. doi:10.1039/c2np20049j

    Article  Google Scholar 

  • van Summeren-Wesenhagen PV, Marienhagen J (2015) Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin. Appl Environ Microbiol 81:840–849. doi:10.1128/AEM.02966-14

    Article  Google Scholar 

  • Wang S, Zhang S, Xiao A et al (2015) Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab Eng 29:153–159. doi:10.1016/j.ymben.2015.03.011

    Article  CAS  Google Scholar 

  • Wu J, Liu P, Fan Y et al (2013) Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from l-tyrosine. J Biotechnol 167:404–411. doi:10.1016/j.jbiotec.2013.07.030

    Article  CAS  Google Scholar 

  • Wu H, Wang Y, Wang Y et al (2014) Quantitatively relating gene expression to light intensity via the serial connection of blue light sensor and CRISPRi. ACS Synth Biol 3:979–982. doi:10.1021/sb500059x

    Article  CAS  Google Scholar 

  • Yang Y, Lin Y, Li L et al (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226. doi:10.1016/j.ymben.2015.03.018

    Article  CAS  Google Scholar 

  • Yeo SCM, Luo W, Wu J et al (2013) Quantification of pinosylvin in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pre-clinical pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 931:68–74. doi:10.1016/j.jchromb.2013.05.023

    Article  CAS  Google Scholar 

  • Zhou J, Du G, Chen J (2014) Novel fermentation processes for manufacturing plant natural products. Curr Opin Biotechnol 25:17–23. doi:10.1016/j.copbio.2013.08.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31071837, 31272217, and 31372116); the Projects of Science and Technology of Guangdong Province (Grant No. 2013B010404041 and 2014B050505018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-fang Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Jl., Guo, Lq., Lin, Jf. et al. A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli . World J Microbiol Biotechnol 32, 102 (2016). https://doi.org/10.1007/s11274-016-2062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2062-z

Keywords

Navigation