Skip to main content
Log in

A novel set of single-copy nuclear gene markers in white oak and implications for species delimitation

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Oaks have often been the focus of research on plant evolution owing to their propensity to intercross and their important role in ecology and economy. Compared with traditional molecular markers, such as amplified fragment length polymorphisms (AFLPs) and simple sequence repeats (SSRs), multiple single-copy nuclear genes (SCNGs) are of greater utility in inferring evolutionary processes in oaks. Nineteen primer pairs were developed from expressed sequence tags (ESTs) of Quercus mongolica and Q. robur that could produce orthologous products in Chinese white oaks (section Quercus). These SCNG markers showed a moderate to high level of nucleotide polymorphism in 42 individuals of two closely related white oaks, Q. mongolica and Q. liaotungensis, and demonstrated high transferability across seven white oaks, four oaks from section Cerris, and one oak from section Lobatae. A phylogenetic tree based on these SCNGs provided resolution at deep nodes and robust support for delimiting populations of Q. mongolica and Q. liaotungensis; Bayesian analysis clustered individuals into their respective species with high probability and no admixture. When the same individuals were used, Bayesian clusters based on either 194 AFLPs or 19 SSRs gave comparable results, but one or several individuals respectively were identified as having admixed ancestry. This indicates that the hybridization rate between these two oaks may have been overestimated using SSR markers due to the occurrence of homoplasy. The SCNGs are powerful for species delimitation of white oaks, and these markers could be useful for future phylogenetics and phylogeography research in white oaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai W-N, Zhang D-Y (2014) Current status and future directions in plant phylogeography. Chin Bull Life Sci 26:125–137

    Google Scholar 

  • Burger WC (1975) The species concept in Quercus. Taxon:45–50

  • Cavender-Bares J (2016) Diversity, distribution and ecosystem services of the North American Oaks. Int Oaks 27:37–48

    Google Scholar 

  • Curto MA, Puppo P, Ferreira D, Nogueira M, Meimberg H (2012) Development of phylogenetic markers from single-copy nuclear genes for multi locus, species level analyses in the mint family (Lamiaceae). Mol Phylogenet Evol 63(3):758–767

    Article  PubMed  Google Scholar 

  • Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59(2):351–366

    Google Scholar 

  • Duarte JM, Wall PK, Edger PP, Landherr LL, Ma H, Pires JC, Leebens-Mack J, dePamphilis CW (2010) Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol Biol 10:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumolin S, Demesure B, Petit R (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91(8):1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Eaton DAR, Hipp AL, González-Rodríguez A, Cavender-Bares J (2015) Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution 69(10):2587–2601

    Article  CAS  PubMed  Google Scholar 

  • Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11(9):1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133(3):693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol 27(9):480–488

    Article  PubMed  Google Scholar 

  • Gailing O, Curtu AL (2014) Interspecific gene flow and maintenance of species integrity in oaks. Ann For Res 57(1):5–18

    Google Scholar 

  • Govaerts R, Frodin DG (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Royal Botanic Gardens, Kew

  • Gugger PF, Cokus SJ, Sork VL (2016) Association of transcriptome-wide sequence variation with climate gradients in valley oak (Quercus lobata). Tree Genet Genomes 12(2):1–14

    Article  Google Scholar 

  • Guichoux E, Garnier-Géré P, Lagache L, Lang T, Boury C, Petit RJ (2013) Outlier loci highlight the direction of introgression in oaks. Mol Ecol 22(2):450–462

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27(3):570–580

    Article  CAS  PubMed  Google Scholar 

  • Hipp AL (2015) Should hybridization make us skeptical of the oak phylogeny? International Oak Journal 26:9–18

    Google Scholar 

  • Hipp AL, Eaton DA, Cavender-Bares J, Fitzek E, Nipper R, Manos PS (2014) A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS One 9(4):e102272

    Article  Google Scholar 

  • Hubert F, Grimm GW, Jousselin E, Berry V, Franc A, Kremer A (2014) Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. Syst Biodivers 12(4):405–423

    Article  Google Scholar 

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida TA, Hattori K, Sato H, Kimura MT (2003) Differentiation and hybridization between Quercus crispula and Q. dentata (Fagaceae): insights from morphological traits, amplified fragment length polymorphism markers, and leafminer composition. Am J Bot 90(5):769–776

    Article  PubMed  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lexer C, Kremer A, Petit R (2006) COMMENT: shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol 15(7):2007–2012

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wunder J, Bissoli G, Scarponi E, Gazzani S, Barbaro E, Saedler H, Varotto C (2008) Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24(5):727–745

    Article  Google Scholar 

  • Luo R, Hipp AL, Larget B (2007) A Bayesian model of AFLP marker evolution and phylogenetic inference. Statistical applications in genetics and molecular biology 6(1): Article 11

  • McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66(2):526–538

    Article  CAS  PubMed  Google Scholar 

  • Muir G, Fleming CC, Schlötterer C (2000) Species status of hybridizing oaks. Nature (Lond) 405(6790)

  • Muir G, Fleming CC, Schlötterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol Biol Evol 18(2):112–119

    Article  CAS  PubMed  Google Scholar 

  • Muir G, Schloetterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.) Mol Ecol 14(2):549–561

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Paul S, Manos JJD, Nixon KC (1999) Phylogeny biogeography and processes of molecular differentiation in quercus subgenus quercus. Mol Phylogenet Evol 12(3):333–349

    Article  Google Scholar 

  • Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci U S A 106(43):18097–18102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161(1):151–164

    Article  CAS  Google Scholar 

  • Petit RJ, Csaikl UM, Bordács S, Burg K, Coart E, Cottrell J, van Dam B, Deans JD et al (2002) Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecol Manag 156(1):5–26

    Article  Google Scholar 

  • Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24(7):386–393

    Article  PubMed  Google Scholar 

  • Plomion C, Aury JM, Amselem J, Alaeitabar T, Barbe V, Belser C, Berges H, Bodenes C et al (2016) Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Mol Ecol Resour 16(1):254–265

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A, Suchard M, Xie D, Drummond A (2014) Tracer v1. 6. Available from http://beast.bio.ed. ac.uk/Tracer

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Salse J (2012) In silico archeogenomics unveils modern plant genome organisation, regulation and evolution. Curr Opin Plant Biol 15(2):122–130

    Article  CAS  PubMed  Google Scholar 

  • Scotti-Saintagne C, Mariette S, Porth I, Goicoechea PG, Barreneche T, Bodénès C, Burg K, Kremer A (2004) Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.] Genetics 168(3):1615–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small RL, Cronn RC, Wendel JF (2004) L. A. S. JOHNSON REVIEW no. 2.. Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17(2):145–170

    Article  CAS  Google Scholar 

  • Song S, Liu L, Edwards SV, Wu S (2012) Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci U S A 109(37):14942–14947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valen LV (1976) Ecological species, multispecies and oaks. Taxon:233–239

  • Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11(1):139–151

    Article  CAS  PubMed  Google Scholar 

  • Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7(2):256–276

    Article  CAS  PubMed  Google Scholar 

  • Whittemore AT, Schaal BA (1991) Interspecific gene flow in sympatric oaks. Proc Natl Acad Sci U S A 88(6):2540–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng K, Fu Y-X, Shi S, Wu C-I (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174(3):1431–1439

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng YF, Liao WJ, Petit RJ, Zhang DY (2010) Exploring species limits in two closely related Chinese oaks. PLoS One 5(11):e15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng YF, Liao WJ, Petit RJ, Zhang DY (2011) Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation. Mol Ecol 20(23):4995–5011

    Article  PubMed  Google Scholar 

  • Zeng YF, Wang WT, Liao WJ, Wang HF, Zhang DY (2015) Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: the Mongolian oak as a case study. Mol Ecol 24(22):5676–5691

    Article  CAS  PubMed  Google Scholar 

  • Zimmer EA, Wen J (2012) Using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 65(2):774–785

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31270701, 31370398). We would like to thank Prof. Da-Yong Zhang from Beijing Normal University and Prof. Shou-Xian Li from Taiwan Normal University for their useful discussions and insightful comments in marker development and Dr. Fang Du from Beijing Forestry University for providing the sample of Q. aquifolioides and her help in marker development.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Fei Zeng or Jian-Guo Zhang.

Additional information

Communicated by A. Kremer

Data archiving statement

All nucleotide sequences were deposited in GenBank with accession numbers KX599550-KX600473

Electronic supplementary material

ESM 1

(DOC 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zeng, YF., Liao, WJ. et al. A novel set of single-copy nuclear gene markers in white oak and implications for species delimitation. Tree Genetics & Genomes 13, 50 (2017). https://doi.org/10.1007/s11295-017-1130-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1130-3

Keywords

Navigation