Skip to main content
Log in

Application of TiO2-organobentonite modified by cetyltrimethylammonium chloride photocatalyst and polyaluminum chloride coagulant for pretreatment of aging landfill leachate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the treatment performance for aging leachate containing refractory organic pollutants by TiO2-organobentonite photocatalyst combined with polyaluminum chloride (PAC) coagulant. TiO2 was immobilized on organobentonite granules as a supporter modified by cetyltrimethylammonium chloride (CTAC). The prepared catalysts were characterized by ESEM, FTIR, and XRD analysis, which showed that TiO2-organobentonite catalyst had uniform coating of TiO2 on support. Chemical oxygen demand (COD) and NH3-N removal rates by combination of TiO2-CTAC2.0 photocatalysis and PAC coagulation were evaluated, optimized, and compared to that by either treatment alone, with respect to TiO2-CTAC2.0 dose, photocatalytic contact time, pH, and PAC dose. Furthermore, higher removal rates (COD 80 %; NH3-N 46 %) were achieved by response surface methodology (RSM) when TiO2-CTAC2.0 photocatalysis was followed by PAC coagulation at optimized conditions. The optimized experimental conditions were TiO2-CTAC2.0 dosage of 5.09 g/L, at pH 5.53, photocatalytic contact time for 180 min, and PAC dosage of 1062 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amor C, De Torres-Socías E, Peres JA, Maldonado MI, Oller I, Malato S, Lucas MS (2015) Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J Hazard Mater 286:261–268

    Article  CAS  Google Scholar 

  • Baskaralingam P, Pulikesi M, Elango D, Ramamurthi V, Sivanesan S (2006) Adsorption of acid dye onto organobentonite. J Hazard Mater 128:138–144

    Article  CAS  Google Scholar 

  • Cai FF, Yang ZH, Huang J, Zeng GM, Wang LK, Yang J (2014) Application of cetyltrimethylammonium bromide bentonite–titanium dioxide photocatalysis technology for pretreatment of aging leachate. J Hazard Mater 275:63–71

    Article  CAS  Google Scholar 

  • Chianese A, Ranauro R, Verdone N (1999) Treatment of landfill leachate by reverse osmosis. Water Res 33:647–652

    Article  CAS  Google Scholar 

  • Cho SP, Hong SC, Hong S-I (2002) Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds. Appl Catal B Environ 39:125–133

    Article  CAS  Google Scholar 

  • De Morais JL, Zamora PP (2005) Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. J Hazard Mater 123(1):181–186

    Article  Google Scholar 

  • Deng Y, Englehardt JD (2006) Treatment of landfill leachate by the Fenton process. Water Res 40:3683–3694. doi:10.1016/j.watres.2006.08.009

    Article  CAS  Google Scholar 

  • Eliyas AE, Ljutzkanov L, Stambolova ID, Blaskov VN, Vassilev SV, Razkazova-Velkova EN, Mehandjiev DR (2013) Visible light photocatalytic activity of TiO2 deposited on activated carbon. Cent Eur J Chem 11:464–470

    CAS  Google Scholar 

  • Gao JL et al. (2015) Integration of autotrophic nitrogen removal, ozonation and activated carbon filtration for treatment of landfill leachate. Chem Eng J 275:281–287. doi:10.1016/j.cej.2015.04.012

    Article  CAS  Google Scholar 

  • Ghafari S, Aziz HA, Isa MH, Zinatizadeh AA (2009) Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J Hazard Mater 163:650–656. doi:10.1016/j.jhazmat.2008.07.090

    Article  CAS  Google Scholar 

  • Ghasemi S, Esfandiar A, Setayesh SR, Habibi-Yangjeh A, Gholami M (2013) Synthesis and characterization of TiO 2–graphene nanocomposites modified with noble metals as a photocatalyst for degradation of pollutants. Appl Catal A Gen 462:82–90

    Article  Google Scholar 

  • Giusti L (2009) A review of waste management practices and their impact on human health. Waste Manag 29:2227–2239. doi:10.1016/j.wasman.2009.03.028

    Article  CAS  Google Scholar 

  • Gotvajn AZ, Tisler T, Zagorc-Koncan J (2009) Comparison of different treatment strategies for industrial landfill leachate. J Hazard Mater 162:1446–1456. doi:10.1016/j.jhazmat.2008.06.037

    Article  CAS  Google Scholar 

  • Huang J, Yang ZH, Zeng GM, Ruan M, Xu HY, Gao WC, et al. (2012) Influence of composite flocculant of PAC and MBFGA1 on residual aluminum species distribution. Chem Eng J 191:269–277

    Article  CAS  Google Scholar 

  • Hu B, Luo H (2010) Adsorption of hexavalent chromium onto montmorillonite modified with hydroxyaluminum and cetyltrimethylammonium bromide. Appl Surf Sci 257:769–775. doi:10.1016/j.apsusc.2010.07.062

    Article  CAS  Google Scholar 

  • Jia C, Wang Y, Zhang C, Qin Q (2011) UV-TiO2 photocatalytic degradation of landfill leachate. Water Air Soil Pollut 217:375–385

    Article  CAS  Google Scholar 

  • Kurniawan TA, Lo W-h, Chan G (2006a) Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chem Eng J 125:35–57

    Article  CAS  Google Scholar 

  • Kurniawan TA, Lo WH (2009) Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment. Water Res 43:4079–4091. doi:10.1016/j.watres.2009.06.060

    Article  CAS  Google Scholar 

  • Kurniawan TA, Lo WH, Chan GY (2006b) Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J Hazard Mater 129:80–100. doi:10.1016/j.jhazmat.2005.08.010

    Article  CAS  Google Scholar 

  • Liu Z, Wu W, Shi P, Guo J, Cheng J (2015) Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Manag 41:111–118

    Article  CAS  Google Scholar 

  • Moreira FC, Soler J, Fonseca A, Saraiva I, Boaventura RA, Brillas E, Vilar VJ (2015) Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate. Water Res 81:375–387

    Article  CAS  Google Scholar 

  • Nagarajan S, Rajendran N (2009) Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications. Appl Surf Sci 255:3927–3932. doi:10.1016/j.apsusc.2008.10.058

    Article  CAS  Google Scholar 

  • Oloibiri V, Ufomba I, Chys M, Audenaert WT, Demeestere K, Van Hulle SW (2015) A comparative study on the efficiency of ozonation and coagulation–flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate. Waste Manag 43:335–342

    Article  CAS  Google Scholar 

  • Peng Y, Zhang S, Zeng W, Zheng S, Mino T, Satoh H (2008) Organic removal by denitritation and methanogenesis and nitrogen removal by nitritation from landfill leachate. Water Res 42:883–892. doi:10.1016/j.watres.2007.08.041

    Article  CAS  Google Scholar 

  • Poblete R, Otal E, Vilches LF, Vale J, Fernández-Pereira C (2011) Photocatalytic degradation of humic acids and landfill leachate using a solid industrial by-product containing TiO2 and Fe. Appl Catal B Environ 102:172–179. doi:10.1016/j.apcatb.2010.11.039

    Article  CAS  Google Scholar 

  • Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468–493

    Article  CAS  Google Scholar 

  • Shavisi Y, Sharifnia S, Hosseini SN, Khadivi MA (2014) Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. J Ind Eng Chem 20:278–283. doi:10.1016/j.jiec.2013.03.037

    Article  CAS  Google Scholar 

  • Shen Y-H (2002) Removal of phenol from water by adsorption–flocculation using organobentonite. Water Res 36:1107–1114

    Article  CAS  Google Scholar 

  • Sun Z, Chen Y, Ke Q, Yang Y, Yuan J (2002) Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. J Photochem Photobiol A Chem 149:169–174

    Article  CAS  Google Scholar 

  • Tatsi AA, Zouboulis AI, Matis KA, Samaras P (2003) Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere 53:737–744. doi:10.1016/s0045-6535(03)00513-7

    Article  CAS  Google Scholar 

  • Umar M, Aziz HA, Yusoff MS (2010) Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag 30:2113–2121. doi:10.1016/j.wasman.2010.07.003

    Article  CAS  Google Scholar 

  • Uygur A, Kargi F (2004) Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. J Environ Manag 71:9–14. doi:10.1016/j.jenvman.2004.01.002

    Article  Google Scholar 

  • Wang K-h, Hsieh Y-h, Chen L-j (1998) The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols. J Hazard Mater 59:251–260

    Article  CAS  Google Scholar 

  • MEP 2010 Water quality–Determination of ammonia nitrogen–Nessler’s reagent spectrophotometry, HJ 535-2009

  • MEP 2009 Water quality–Determination of biochemical oxygen demand after 5 days (BOD5) for dilution and seeding method, HJ 505-2009

  • MEP 1990 Water quality–Determination of the chemical oxygen demand–Dichromate method GB, 11914-89

  • Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Malato S, Weber J-V (2004) Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts. Appl Catal B Environ 53:127–137. doi:10.1016/j.apcatb.2004.04.017

    Article  CAS  Google Scholar 

  • Zhu L, Ren X, Yu S (1998) Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water. Environ Sci Technol 32:3374–3378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the National Natural Science Foundation of China (Grant Nos. 51378189, 51578223, and 51521006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hui Yang.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Yang, ZH., Song, PP. et al. Application of TiO2-organobentonite modified by cetyltrimethylammonium chloride photocatalyst and polyaluminum chloride coagulant for pretreatment of aging landfill leachate. Environ Sci Pollut Res 23, 18552–18563 (2016). https://doi.org/10.1007/s11356-016-7031-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7031-4

Keywords

Navigation