Skip to main content
Log in

Assessing the genetic diversity of the critically endangered Chinese sturgeon Acipenser sinensis using mitochondrial markers and genome-wide single-nucleotide polymorphisms from RAD-seq

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

As a living fossil, the endangered Chinese sturgeon (Acipenser sinensis) has been considered a national treasure in China. Here, the famous Gezhouba Dam and Three Gorges Dam on the Yangtze River were built in 1988 and 2006, for economic purposes. The natural population of Chinese sturgeon has declined since then, as these dams block its migratory route to the original spawning grounds in the middle reaches of the Yangtze River. In 2013 and 2014, there was an absence of spawning where it typically happened near the Gezhouba Dam. Nevertheless, from April to June in 2015, over 1,000 larvae with different body lengths (10–35 cm) were detected along the Shanghai Yangtze Estuary; but only little is currently known about the population genetic structure of the Chinese sturgeon. Herein, we inferred population genetic parameters from 462 available Chinese sturgeon specimens based on a 421-bp fragment of the mitochondrial DNA (mtDNA) D-loop region and 1,481,620 SNPs (single-nucleotide polymorphisms) generated by restriction site-associated DNA sequencing (RAD-seq). For the D-loop dataset, 15 haplotypes were determined. Randomly picked 23 individuals, representing the 15 D-loop haplotype groups, were subsequently used for further RAD-seq validation. The average nucleotide diversity calculated from the mtDNA and RAD datasets was 0.0086 and 0.000478, respectively. The overall effective female population size was calculated to be 1,255 to 2,607, and the long-term effective population size was estimated to range from 11,950 to 119,500. We observed that the genetic variability and the effective female population size of the current population in the Yangtze River are severely low, which are similar to the data reported over 10 years ago. The deduced relatively small effective population of female fish, limiting the genetic connectivity among Chinese sturgeon, should be considered a serious threat to this endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F.W., Hohenlohe, P.A., and Luikart, G. (2010). Genomics and the future of conservation genetics. Nat Rev Genet 11, 697–709.

    Article  PubMed  CAS  Google Scholar 

  • Brumfield, R.T., Beerli, P., Nickerson, D.A., and Edwards, S.V. (2003). The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18, 249–256.

    Article  Google Scholar 

  • Bruneaux, M., Johnston, S.E., Herczeg, G., Merilä, J., Primmer, C.R., and Vasemägi, A. (2013). Molecular evolutionary and population genomic analysis of the nine-spined stickleback using a modified restriction-siteassociated DNA tag approach. Mol Ecol 22, 565–582.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.R., Beckenback, A.T., and Smith, M.J. (1993). Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol Biol Evol 10, 326–341.

    PubMed  CAS  Google Scholar 

  • Catchen, J.M., Amores, A., Hohenlohe, P., Cresko, W., and Postlethwait, J. H. (2011). Stacks: building and genotyping loci de novo from short-read sequences. G3 1, 171–182.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Catchen, J., Bassham, S., Wilson, T., Currey, M., O’Brien, C., Yeates, Q., and Cresko, W.A. (2013). The population structure and recent colonization history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing. Mol Ecol 22, 2864–2883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corander, J., Majander, K.K., Cheng, L., and Merilä, J. (2013). High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol 22, 2931–2940.

    Article  PubMed  CAS  Google Scholar 

  • Dai, Z., Liu, J.T., Wei, W., and Chen, J. (2014). Detection of the Three Gorges Dam influence on the Changjiang (Yangtze River) submerged delta. Sci Rep 4, 6600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etter, P.D., Bassham, S., Hohenlohe, P.A., Johnson, E.A., and Cresko, W.A. (2011). SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol 772, 157–178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1, 47–50.

    CAS  Google Scholar 

  • Frankham, R. (2005). Genetics and extinction. Biol Conserv 126, 131–140.

    Article  Google Scholar 

  • Fu, Y,X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hohenlohe, P.A., Amish, S.J., Catchen, J.M., Allendorf, F.W., and Luikart, G. (2011). Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour 11, 117–122.

    Article  PubMed  Google Scholar 

  • Hohenlohe, P.A., Bassham, S., Etter, P.D., Stiffler, N., Johnson, E.A., and Cresko, W.A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6, e1000862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu, Y., Qi, D., Wang, H., and Wei, F. (2010). Genetic evidence of recent population contraction in the southernmost population of giant pandas. Genetica 138, 1297–1306.

    Article  PubMed  Google Scholar 

  • Li, R., Yu, C., Li, Y., Lam, T.W., Yiu, S.M., Kristiansen, K., and Wang, J. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967.

    Article  PubMed  CAS  Google Scholar 

  • Li, F.H.F., and Roderick, T.H. (1970). Computer calculation of wright’s inbreeding coefficient by Cruden’s method. J Hered 61, 37–38.

    Article  PubMed  CAS  Google Scholar 

  • Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    Article  PubMed  CAS  Google Scholar 

  • Macher, J.N., Rozenberg, A., Pauls, S.U., Tollrian, R., Wagner, R., and Leese, F. (2015). Assessing the phylogeographic history of the montane caddisfly Thremma gallicum using mitochondrial and restriction-siteassociated DNA (RAD) markers. Ecol Evol 5, 648–662.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, M.R., Dunham, J.P., Amores, A., Cresko, W.A., and Johnson, E.A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17, 240–248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, Y.S., Chang, J., Lek, S., Cao, W., and Brosse, S. (2003). Conservation strategies for endemic fish species threatened by the three gorges dam. Conserv Biol 17, 1748–1758.

    Article  Google Scholar 

  • Price, M.N., Dehal, P.S., and Arkin, A.P. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26, 1641–1650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pujolar, J.M., Jacobsen, M.W., Frydenberg, J., Als, T.D., Larsen, P.F., Maes, G.E., Zane, L., Jian, J.B., Cheng, L., Hansen, M.M. (2013). A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel. Mol Ecol Resour 13, 706–714.

    Article  PubMed  CAS  Google Scholar 

  • Puritz, J.B., Gold, J.R., and Portnoy, D.S. (2016). Fine-scale partitioning of genomic variation among recruits in an exploited fishery: causes and consequences. Sci Rep 6, 1–6.

    Article  CAS  Google Scholar 

  • Roesti, M., Salzburger, W., and Berner, D. (2012). Uninformative polymorphisms bias genome scans for signatures of selection. BMC Evol Biol 12, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based ph-ylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis, A., Hoover, P., Rougemont, J., and Renner, S. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systatic Biol 57, 758–771.

    Article  Google Scholar 

  • Tajima, F. (1993). Measurement of DNA polymorphism. In: Mechanisms of Molecular Evolution, N., Takahata, A.G., Clark, eds. (Sunderland: Sinauer Associates. Inc.), pp. 37–59.

    Google Scholar 

  • Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526.

    PubMed  CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725–2729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waples, R.S. (2005). Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14, 3335–3352.

    Article  PubMed  CAS  Google Scholar 

  • Watterson, G.A. (1975). On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7, 256–276.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, B.D., Xue, D.X., Wang, J., Li, Y.L., Liu, B.J., and Liu, J.X. (2016). Development and preliminary evaluation of a genomewide single nucleotide polymorphisms resource generated by RAD-seq for the small yellow croaker (Larimichthys polyactis). Mol Ecol Resour 16, 755–768.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S.M., Deng, H., Yang, Y., and Wu, Q.J. (2000). Population genetic structure and genetic diversity of the Chinese sturgeon (Acipenser sinensis) based on random amplified polymorphic DNA analysis. Oceanol Limnol Sin 31, 1–7.

    CAS  Google Scholar 

  • Zhang, S.M., Wang, D.Q., and Zhang, Y.P. (2003). Mitochondrial DNA variation, effective female population size and population history of the endangered Chinese sturgeon, Acipenser sinensis. Conserv Genet 4, 673–683.

    Article  CAS  Google Scholar 

  • Zhang, S.M., Wu, Q.J., and Zhang, Y.P. (2001). On the taxonomic status of the Yangtze sturgeon, Asian and American green sturgeons inferred from mitochondrial control region sequences. Acta Zool Sin 47, 632–639.

    CAS  Google Scholar 

  • Zhang, S., Zhang, Y., Zheng, X., Chen, Y., Deng, H., Wang, D., Wei, Q., Zhang, Y., Nie, L., Wu, Q. (2000). Molecular phylogenetic systematics of twelve species of Acipenseriformes based on mtDNAND4L-ND4 gene sequence analysis. Sci China Ser C-Life Sci 43, 129–137.

    Article  CAS  Google Scholar 

  • Zhao F, Zhuang P, Zhang T, Xu JM, Liu JY, Zhang LZ, Wang M, and Shi Q. (2015). New timing record of juvenile Acipenser sinensis appearing in the Yangtze Estuary (in Chinese). Mar Fish 37, 288–292.

    Google Scholar 

  • Zhu, B., Zhou, F., Cao, H., Shao, Z., Zhao, N., May, B., and Chang, J. (2002). Analysis of genetic variation in the Chinese sturgeon, Acipenser sinensis: estimating the contribution of artificially produced larvae in a wild population. J Appl Ichthyol 18, 301–306.

    Article  CAS  Google Scholar 

  • Zhuang, P., Zhao, F., Zhang, T., Chen, Y., Liu, J., Zhang, L., and Kynard, B. (2016). New evidence may support the persistence and adaptability of the near-extinct Chinese sturgeon. Biol Conserv 193, 66–69.

    Article  Google Scholar 

  • Zhuang, P., Kynard, B., Zhang, L., Zhang, T., and Cao, W. (2002). Ontogenetic behavior and migration of Chinese sturgeon, Acipenser sinensis. Environ Biol Fishes 65, 83–97.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31370047, U1301252), Shenzhen Scientific R & D Grant (GJHS20160331150703934), Shenzhen Dapeng Special Program for Industrial Development (KY20160102) and Zhenjiang Leading Talent Program for Innovation and Entrepreneurship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhui Chen, Junmin Xu or Qiong Shi.

Electronic supplementary material

Table S1

Sample information for this study

Table S2

Estimates of genetic distance between sequences. COI-H1 and COI-H2 represent the 2 haplotypes of COI. Evolutionary analyses were conducted by MEGA6

Table S3

Variable nucleotide sites within the 421-bp amplified mtDNA D-loop (light strand) of Chinese sturgeon (A. sinensis)

Table S4

Collective information of the specimens (used for RAD analyses), sequence data, unique stacks, loci and SNPs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., You, X., Xu, P. et al. Assessing the genetic diversity of the critically endangered Chinese sturgeon Acipenser sinensis using mitochondrial markers and genome-wide single-nucleotide polymorphisms from RAD-seq. Sci. China Life Sci. 61, 1090–1098 (2018). https://doi.org/10.1007/s11427-017-9254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9254-6

Keywords

Navigation