Skip to main content
Log in

Ab initio study of a Y-doped ∑31 grain boundary in alumina

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The atomic structures and energetics of clean and Y-doped general grain boundary (GB) ∑31/(0001) models in α-Al2O3 are studied by a series of high precision ab initio calculations. A large supercell with 700 atoms and periodic boundary conditions is adopted for undoped and Y-doped GB with different substitution sites and concentrations. It is shown that Y atoms preferably segregate to the central column of the 7-member Al ring. This is explained as more favorable bond formation for Y in this position and lower GB energy. The calculated GB formation energy for the clean and Y-doped cases is respectively 3.99 and 3.67 J/m2. On the average, the GB region in ∑31 has a slightly lower charge density than the bulk crystalline region. In addtition, the GB induces a long ranged asymmetric electrostatic potential distribution on each side of the grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cannon R M, Rhodes W H, Heuer A H. Plastic-deformation of fine-grained alumina (Al2O3): Interface-controlled diffusional creep. J Am Ceram Soc, 1980, 63: 46–53

    Article  Google Scholar 

  2. Hoche T, Kenway P R, Kleebe H J, et al. The structure of special grain boundaries in α-Al2O3. J Phys Chem Solids, 1994, 55(10): 1067–1082

    Article  ADS  Google Scholar 

  3. Cho J, Harman M P, Chan H M, et al. Effect of yttrium and lanthanum on the tensile creep behavior of aluminum oxide. J Am Ceram Soc, 1997, 80(4): 1013–1017

    Google Scholar 

  4. Yoshida H, Ikuhara Y, Sakuma T. Grain boundary electronic structure related to the high-temperature creep resistance in polycrystalline Al2O3. Acta Mater, 2002, 50: 2955–2966

    Article  Google Scholar 

  5. Lartigue-Korinek S, Priester L. Comment on influence of yttrium doping on grain misorientation in aluminium oxide. J Am Ceram Soc, 2000, 83: 1323

    Google Scholar 

  6. Atlay A, Gulgun M A. Microstructural evolution of calcium-doped alumina. J Am Ceram Soc, 2003, 86(4): 623–629

    Google Scholar 

  7. Matsunaga K, Nishimura H, Hanyu S, et al. HRTEM study on grain boundary atomic structures related to the sliding behavior in alumina bicrystals. Appl Surf Sci, 2005, 241: 75–79

    Article  ADS  Google Scholar 

  8. Hanyu S, Nishimura H, Matsunaga K, et al. Stress-induced facet coarsening in a ∑7{4510} symmetrical tilt grain boundary in an alumina bicrystal. J Mater Sci, 2005, 40: 3137–3142

    Article  ADS  Google Scholar 

  9. Matsunaga K, Nishimura H, Muto H, et al. Direct measurements of grain boundary sliding in yttrium-doped alumina bicrystals. Appl Phys Lett, 2003, 82: 1179–1181

    Article  ADS  Google Scholar 

  10. Nishimura H, Matsunaga K, Saito T, et al. Atomic structures and energies of ∑7 symmetrical tilt grain boundaries in alumina bicrystals. J Am Ceram Soc, 2003, 86(4): 574–580

    Article  Google Scholar 

  11. Marinopoulos A G, Nufer S, Elsässer C. Interfacial structures and energetics of basal twins in α-Al2O3: First-principles density-functional and empirical calculations. Phys Rev B, 2001, 63: 165112–165121

    Article  ADS  Google Scholar 

  12. Fabris S, Elsässer C. First-principles analysis of cation segregation at grain boundaries in α-Al2O3. Acta Mater, 2003, 51: 71–86

    Article  Google Scholar 

  13. Chen J, Xu Y N, Rulis P, et al. Ab initio theoretical tensile test on Y-doped ∑ = 3 grain boundary in α-Al2O3. Acta Mater, 2005, 53: 403–410

    Article  Google Scholar 

  14. Chen J, Ouyang L, Ching W Y. Molecular dynamics simulation of Y-doped ∑37 grain boundary in alumina. Acta Mater, 2005, 53: 4111–4120

    Article  Google Scholar 

  15. Northrup J E, Neugebauer J, Romano L T. Inversion domain and stacking mismatch boundaries in GaN. Phys Rev Lett, 1996, 77: 103–106

    Article  ADS  Google Scholar 

  16. Kohyama M. Ab initio study of the tensile strength and fracture of coincidence tilt boundaries in cubic polar interfaces of the {122} ∑= 9 boundary SiC. Phys Rev B, 2002, 65: 184107–184118

    Article  ADS  Google Scholar 

  17. Zhang Y, Lu G H, Deng S, et al. Weakening of an aluminum grain boundary induced by sulfur segregation: A first-principles computational tensile test. Phys Rev B, 2007, 75: 174101

    Article  ADS  Google Scholar 

  18. Lu G H, Zhang Y, Deng S, et al. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening. Phys Rev B, 2006, 73: 224115

    Article  ADS  Google Scholar 

  19. Yamaguchi M, Shiga M, Kaburaki H. Grain boundary decohesion by impurity segregation in a nickel-sulfur system. Science, 2005, 307: 393–397

    Article  ADS  Google Scholar 

  20. Elsässer C, Elaasser T. Codoping and grain-boundary cosegregation of substitutional cations in Al2O3: A density-functional-theory study. J Am Ceram Soc, 2005, 88(1): 1–14

    Google Scholar 

  21. Buban J, Matsunaga K, Chen J, et al. Grain boundary strengthening in alumina by rare earth impurities. Science, 2006, 311: 212–214

    Article  ADS  Google Scholar 

  22. Catlow C R A, James R. Defect energetics in α-Al2O3 and rutile TiO2. Phys Rev B, 1982, 25(2): 1006–1026

    Article  ADS  Google Scholar 

  23. Gale D. “GULP”, a general utility lattice program. http://www.ch.ic.ac.uk/gale/Research/gulp.html, 2002-08

  24. Brandon D G, Ralph B, Rangantahn S, et al. A field ion microscope study of atomic configuration at grain boundaries. Acta Metal, 1964, 12: 813–821

    Article  Google Scholar 

  25. Grimmer H, Bonnet R, Latigue S, et al. Theoretical and experimental description of grain boundaries in rhombohedral α-Al2O3. Phil Mag A, 1990, 61: 493–509

    Article  ADS  Google Scholar 

  26. Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plain wave basis set. Comput Mat Sci, 1996, 6: 15–50

    Article  Google Scholar 

  27. Ching W Y. Electronic structure and bonding of all crystalline phase in the silica-yttria-silicon nitride phase equilibrium diagram. J Am Ceram Soc, 2004, 87(11): 1996–2013

    Article  Google Scholar 

  28. Kingery W D. Plausible concepts necessary and sufficient for interpretation of ceramic grain boundary phenomena (I): Grain boundary characteristics, structure and electrostatic potential. J Am Ceram Soc, 1974, 57(1): 1–8

    Article  Google Scholar 

  29. Ikeda J A S, Chiang Y M. Space charge segregation at grain boundaries in titanium dioxide (I): Relationship between lattice defect chemistry and space charge potential. J Am Ceram Soc, 1993, 76(10): 2437–2446

    Article  Google Scholar 

  30. Ikeda J A S, Chiang Y M, Garratt-Reed A J, et al. Space charge segregation at grain boundaries in titanium dioxide (II): Model experiments. J Am Ceram Soc, 1993, 76(10): 2447–2459

    Article  Google Scholar 

  31. Kliewer K L, Kohler J S. Space charge in ionic crystals (I): General approach with application to NaCl. Phys Rev, 1965, 140: A1226–A1240

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10744002 and 10774017)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Xu, Y., Chen, D. et al. Ab initio study of a Y-doped ∑31 grain boundary in alumina. Sci. China Ser. G-Phys. Mech. Astron. 51, 1607–1615 (2008). https://doi.org/10.1007/s11433-008-0154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0154-y

Keywords

Navigation