Skip to main content
Log in

A Visualized Assay for Quercetin Based on the Formation of Silver–Gold Alloy Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A visualized assay for quercetin (QU) was first developed based on the formation of silver–gold alloy nanoparticles in this contribution. With the ability to reduce metal ions to metal substances, QU could reduce Ag+ absorbed on the surface of gold nanoparticles to metallic silver. The thickness of the formed Ag shell and the color change of the solution were proportional to the concentration of QU. Therefore, visualized detection of QU could be realized by studying the surface resonance plasmon absorption spectra of the analytical systems after addition of different concentration of QU. Under optimum conditions, trace amount of QU could be detected in the linear range 9.0 × 10−7–1.0 × 10−4 mol L−1 with a detection limit of 6.5 × 10−7 mol L−1. The present assay was applied in the determination of QU in human serum and satisfactory results were obtained. This assay is simple, rapid, and cost-effective, and it is a powerful complement for the spectroscopy assays for QU. Also, it is the first visualized spectroscopic assay of QU until now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Russo M, Spagnuolo C, Tedesco I, Bilotto S, Russo GL (2012) Biochem Pharmacol 83:6–15

    Article  CAS  Google Scholar 

  2. Harwood M, Nikiel BD, Borzelleca JF, Flamm GW, Williams GM, Lines TC (2007) Food Chem Toxicol 45:2179–2205

    Article  CAS  Google Scholar 

  3. Jin JH, Kwon C, Park W, Kim S, Jung S (2008) J Electroanal Chem 623:142–146

    Article  CAS  Google Scholar 

  4. Ishii K, Furuta T, Kasuya Y (2003) J Chromatogr B 794:49–56

    Article  CAS  Google Scholar 

  5. Chen G, Zhang HW, Ye JN (2000) Anal Chim Acta 423:69–76

    Article  CAS  Google Scholar 

  6. Satpati AK, Sahoo S, Dey MK, Reddy AVR, Mukherjee T (2011) Anal Methods 3:1344–1350

    Article  CAS  Google Scholar 

  7. Xu XW, Zhang J, Yang F, Yang XR (2011) Chem Commun 47:9435–9437

    Article  CAS  Google Scholar 

  8. Kim S, Kim J, Lee NH, Jang HH, Han MS (2011) Chem Coummun 47:10299–10301

    Article  CAS  Google Scholar 

  9. Guo YM, Wang Z, Qu WS, Shao HW, Jiang XY (2011) Biosens Bioelectron 26:4064–4069

    Article  CAS  Google Scholar 

  10. Li TS, Zhu K, He S, Xia X, Liu SQ, Wang Z, Jiang XY (2011) Analyst 136:2893–2896

    Article  CAS  Google Scholar 

  11. Larmour A, Graham D (2011) Analyst 136:3831–3853

    Article  CAS  Google Scholar 

  12. Liu DB, Wang Z, Jiang XY (2011) Nanoscale 3:1421–1433

    Article  CAS  Google Scholar 

  13. Zheng DY, Hu CG, Gan T, Dang XP, Hu SS (2010) Sensor Actuat B-Chem 148:247–252

    Article  CAS  Google Scholar 

  14. Yang Y, Shi JL, Kawamura G, Nogami M (2008) Scripta Mater 58:862–865

    Article  CAS  Google Scholar 

  15. Storhoff J, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  16. Liu T, Liu ZF, Hu XL, Kong L, Liu SP (2008) Luminescence 23:1–6

    Article  Google Scholar 

  17. Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) J Phys Chem C 111:12839–12847

    Article  CAS  Google Scholar 

  18. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Science 318:426–430

    Article  CAS  Google Scholar 

  19. Prasad BLV, Arumugam SK, Bala T, Sastry M (2005) Langmuir 21:822–826

    Article  CAS  Google Scholar 

  20. Wei H, Chen CG, Han BY, Wang EK (2008) Anal Chem 80:7051–7055

    Article  CAS  Google Scholar 

  21. Chen YR, Wu HH, Li ZP, Wang PJ, Yang LK, Fang Y (2012) Plasmonics. doi: 10.1007/s11468-012-9336-6

  22. Ma YY, Li WY, Cho EC, Li ZY, Yu T, Zeng J, Xie ZX, Xia YN (2010) ACS Nano 4:6725–6734

    Article  CAS  Google Scholar 

  23. Collings PJ, Gibbs EJ, Starr TE, Vafek O, Yee C, Pomerance LA, Pasternack RF (1999) J Phys Chem B 103:8474–8481

    Article  CAS  Google Scholar 

  24. Zhang SZ, Zhao FL, Li KA, Tong SY (2001) Anal Chim Acta 431:133–139

    Article  CAS  Google Scholar 

  25. Chen LX, Zhao WF, Jiao YF, He XW, Wang J, Zhang YK (2007) Spectrochim Acta A 68:484–490

    Article  Google Scholar 

  26. Li F, Yan F, Zhao C, Tang B (2011) Biosens Bioelectron 26:4628–4631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All the authors thank the financial support from the Guangdong Science and Technology Department (no. 2006B35630009) and the Science Foundation of Shantou University (no. YR09009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanguang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Zhang, G., Chen, X. et al. A Visualized Assay for Quercetin Based on the Formation of Silver–Gold Alloy Nanoparticles. Plasmonics 8, 201–207 (2013). https://doi.org/10.1007/s11468-012-9376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9376-y

Keywords

Navigation