Skip to main content
Log in

A hybrid reconstruction algorithm for fluorescence tomography using Kirchhoff approximation and finite element method

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Fluorescence molecular tomography is a promising imaging modality and has developed fast in the past years. However, challenges remain in its reconstruction, especially for the reconstruction accuracy and computational efficiency. Generally, an analytical method is computationally efficient while a numerical method has advantages in the reconstruction accuracy for arbitrary geometries. To achieve high reconstruction accuracy at low computational cost, a hybrid method that combines an analytical method based on Kirchhoff approximation (KA) and a numerical method based on finite element method (FEM) is proposed. This method is tested with numerical simulations and phantom experiments. Results of numerical simulations indicate that with the hybrid method, the reconstruction accuracy is improved while the computational time decreases by 40–70 % compared with the standalone KA method and FEM. Phantom experiments validate its feasibility for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arridge SR (1995) Photon-measurement density functions. Part I: Analytical forms. Appl Opt 34(31):7395–7409

    Article  PubMed  CAS  Google Scholar 

  2. Baritaux J, Hassler K, Bucher M, Sanyal S, Unser M (2011) Sparsity-driven reconstruction for FDOT with anatomical priors. IEEE Trans Med Imaging 30(5):1143–1153

    Article  PubMed  Google Scholar 

  3. Boas DA, O’Leary MA, Chance B, Yodh AG (1994) Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications. Proc Nati Acad Sci USA 91:4887–4891

    Article  CAS  Google Scholar 

  4. Cong W, Durairaj K, Wang LV, Wang G (2006) A Born-type approximation method for bioluminescence tomography. Med Phys 33(3):679–686

    Article  PubMed  Google Scholar 

  5. Deliolanis NC, Dunham J, Wurdinger T, Figueiredo J, Tannous BA, Ntziachristos V (2009) In vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography. J Biomed Opt 14(3):030509

    Article  PubMed  Google Scholar 

  6. Kak A, Slaney M (1987) Computerized tomographic imaging. IEEE Press, New York

    Google Scholar 

  7. Liu F, Liu X, Wang D, Zhang B, Bai J (2010) A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals. Ann Biomed Eng 38:3440–3448

    Article  PubMed  Google Scholar 

  8. Meyer H, Garofalakis A, Zacharakis G, Psycharakis S, Mamalaki C, Kioussis D, Economou EN, Ntziachristos V, Ripoll J (2007) Noncontact optical imaging in mice with full angular coverage and automatic surface extraction. Appl Opt 46(17):3617–3627

    Article  PubMed  Google Scholar 

  9. Montet X, Figueiredo J, Alencar H, Mahmood U, Weissleder R (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242(3):751–758

    Article  PubMed  Google Scholar 

  10. Moskow S, Schotland JC (2009) Numerical studies of the inverse Born series for diffuse waves. Inverse Probl 25:095007

    Article  Google Scholar 

  11. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–320

    Article  PubMed  CAS  Google Scholar 

  12. Patterson MS, Chance B, Wilson BC (1989) Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties. Appl Opt 28(12):2331–2336

    Article  PubMed  CAS  Google Scholar 

  13. Ripoll J, Nieto-Vesperinas M, Weissleder R, Ntziachristos V (2002) Fast analytical approximation for arbitrary geometries in diffuse optical tomography. Opt Lett 27(7):527–529

    Article  PubMed  Google Scholar 

  14. Ripoll J, Ntziachristos V, Carminati R, Nieto-Vesperinas M (2001) Kirchhoff approximation for diffusive waves. Phys Rev E 64:051917

    Article  CAS  Google Scholar 

  15. Schulz RB, Ripoll J, Ntziachristos V (2004) Experimental fluorescence tomography of tissues with noncontact measurements. IEEE Trans Med Imaging 23(4):492–500

    Article  PubMed  Google Scholar 

  16. Song X, Wang D, Chen N, Bai J, Wang H (2007) Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm. Opt Express 15(26):18300–18317

    Article  PubMed  Google Scholar 

  17. Soto-Crespo JM, Nieto-Vesperinas M (1989) Electromagnetic scattering from very rough random surfaces and deep reflection gratings. J Opt Soc Am A 6(3):367–384

    Article  CAS  Google Scholar 

  18. van Horssen P, Siebes M, Hoefer I, Spaan JA, van den Wijngaard JP (2010) Improved detection of fluorescently labeled microspheres and vessel architecture with an imaging cryomicrotome. Med Biol Eng Comput 48(8):735–744

    Article  PubMed  Google Scholar 

  19. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9(1):123–128

    Article  PubMed  CAS  Google Scholar 

  20. Zhou L, Yazici B, Ale AB, Ntziachristos V (2010) Performance evaluation of adaptive meshing algorithms for fluorescence diffuse optical tomography using experimental data. Opt Lett 35(22):3727–3729

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (973) under Grant No. 2011CB707701, the National Natural Science Foundation of China under Grant Nos. 81071191, 60831003, 30930092 and 30872633; the Beijing Natural Science Foundation Grant No. 3111003, and the Tsinghua-Yue-Yuen Medical Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Cao, X., Zhang, B. et al. A hybrid reconstruction algorithm for fluorescence tomography using Kirchhoff approximation and finite element method. Med Biol Eng Comput 51, 7–17 (2013). https://doi.org/10.1007/s11517-012-0953-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0953-1

Keywords

Navigation