Skip to main content
Log in

A Thermodynamic Assessment of the Li-Ge System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The thermodynamic modeling of the Li-Ge binary system was carried out using CALPHAD (CALculation of PHAse Diagram) method. The liquid phase was described as substitutional solution phase, while the nine intermetallic compounds Li17Ge4, Li4.1Ge, Li15Ge4, Li13Ge4, Li14Ge6, Li9Ge4, Li12Ge7, LiGe and Li7Ge12 were treated as stoichiometric compounds. The temperature dependent interaction parameters \(L_{i}^{\text{Liquid}}\) of liquid were described by either exponential (Kaptay equation) or linear equation, respectively. The comparisons between experimental data and modeled results are given. The calculations based on the obtained thermodynamic parameters are in good agreement with both phase diagram data and thermodynamic values. In particular, the liquid phase was successfully described by the exponential equation for it is possible to avoid the occurrence of the artificial miscibility gap at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.-J. Zhang, A Review of the Electrochemical Performance of Alloy Anodes for Lithium–Ion Batteries, J. Power Sources, 2011, 196(1), p 13-24

    Article  ADS  Google Scholar 

  2. M.N. Obrovac and L. Christensen, Structural Changes in Silicon Anodes During Lithium Insertion/Extraction, Electrochem. Solid-State Lett., 2004, 7(5), p A93-A96

    Article  Google Scholar 

  3. T.D. Hatchard and J.R. Dahn, In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon, J. Electrochem. Soc., 2004, 151(6), p A838-A842

    Article  Google Scholar 

  4. G.R. Goward, N.J. Taylor, D.C.S. Souza, and L.F. Nazar, The True Crystal Structure of Li17M4 (M = Ge, Sn, Pb)-Revised from Li22M5, J. Alloys Compd., 2001, 329(1–2), p 82-91

    Article  Google Scholar 

  5. M. Zeilinger, D. Benson, U. Haeussermann, and T.F. Faessler, Single Crystal Growth and Thermodynamic Stability of Li17Si4, Chem. Mater., 2013, 25(9), p 1960-1967

    Article  Google Scholar 

  6. C.S. Fuller and J.C. Severiens, Mobility of Impurity Ions in Germanium and Silicon, Phys. Rev., 1954, 96, p 21-24

    Article  ADS  Google Scholar 

  7. J. Graetz, C.C. Ahn, R. Yazami, and B. Fultz, Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities, J. Electrochem. Soc., 2004, 151(5), p A698-A702

    Article  Google Scholar 

  8. H.G. Smith, R. Berliner, J.D. Jorgensen, M. Nielsen, and J. Trivisonno, Pressure Effects on the Martensitic Transformation in Metallic Lithium, Phys. Rev. B Condens. Matter, 1990, 41(2), p 1231-1234

    Article  ADS  Google Scholar 

  9. M. Zeilinger and T.F. Fassler, Structural and Thermodynamic Similarities of Phases in the Li-Tt (Tt = Si, Ge) Systems: Redetermination of the Lithium-Rich Side of the Li-Ge Phase Diagram and Crystal Structures of Li17Si4.0−xGex for x = 2.3, 3.1, 3.5, and 4 as well as Li4.1Ge, Dalton Trans., 2014, 43(40), p 14959-14970

    Article  Google Scholar 

  10. Q.C. Johnson, G.S. Smith, and D. Wood, Crystal Structure of Li15Ge4, Acta Crystallogr., 1965, 18(1), p 131-132

    Article  Google Scholar 

  11. V. Hopf, W. Mueller, and H. Schaefer, Structure of the Lithium Germanide Phase Li7Ge2, Z. Naturforsch., B Chem. Sci., 1972, 27(10), p 1157-1160

    Article  Google Scholar 

  12. A. Gruttner, R. Nesper, and HGv Schnering, New Phases in the Li-Ge System: Li7Ge12, Li12Ge7, Li14Ge6, Acta Crystallogr. Sect. A Found. Crystallogr., 1981, 37(a1), p C161

    Article  Google Scholar 

  13. V. Hopf, H. Schaefer, and A. Weiss, Crystal Structure of the Lithium Germanide [Li9Ge4], Z. Naturforsch. B Chem. Sci., 1970, 25(6), p 653

    Article  Google Scholar 

  14. A. Grüttner, Ph.D Thesis, University of Stuttgart, Germany, 1982

  15. J. Evers, G. Oehlinger, G. Sextl, and H.-O. Becker, High-Pressure LiGe with Layers Containing Two- and Four-Coordinate Germanium Atoms, Angew. Chem. Int. Ed., 1987, 26(1), p 76-78

    Article  Google Scholar 

  16. A. Grüttner, R. Nesper, and H.G. von Schnering, Novel Metastable Germanium Modifications Allo-Ge and 4H-Ge from Li7Ge12, Angew. Chem. Int. Ed., 1982, 21(12), p 912-913

    Article  Google Scholar 

  17. J.F.C. Baker and M. Hart, Absolute Measurement of the Lattice Parameter of Germanium Using Multiple-beam X-ray Diffractometry, Acta Crystallogr. Sect. A Found. Crystallogr., 1975, A31(3), p 364-367

    ADS  Google Scholar 

  18. J. Sangster and A.D. Pelton, The Ge-Li System (Germanium–Lithium), J. Phase Equilib., 1997, 18(3), p 289-294

    Article  Google Scholar 

  19. R. Nesper, Structure and Chemical Bonding in Zintl-Phases Containing Lithium, Prog. Solid State Chem., 1990, 20(1), p 1-45

    Article  Google Scholar 

  20. G.I. Oleksiv. Crystal Structures of Binary Compounds of Lithium with Strontium, Barium, Aluminum, Thallium, Silicon, and Germanium, Probl. Rozvitku Prirodn. i Tochn. Nauk, Sb. (Lvov L’vivs’k. Univ.), 1964, p 76–77

  21. E.I. Gladyshevskii, G.I. Oleksiv, and P.I. Kripyakevich, New Specimens of the Structural Type Li22Pb5, Kristallografiya, 1964, 9(3), p 338-341

    Google Scholar 

  22. A.T. Dadd and P. Hubberstey, Solubilities of Silicon and of Germanium in Liquid Lithium. Lithium–Germanium Partial Phase Diagram, J. Chem. Soc. Faraday Trans. 1, 1981, 77(8), p 1865-1870

    Article  Google Scholar 

  23. I.M. Kotina, V.V. Kuryatkov, G.N. Mosina, Novikov, SR, and L.M. Sorokin, Formation of a New Phase During the Exosolution of a Saturated Lithium Solid Solution in Germanium, Fizika Tverdogo Tela (Sankt-Peterburg), 1984, 26(2), p 436-440

    Google Scholar 

  24. M.R. St. John, A.J. Furgala, and A.F. Sammells, Thermodynamic Studies of Lithium–Germanium Alloys: Application to Negative Electrodes for Molten Salt Batteries, J. Electrochem. Soc., 1982, 129(2), p 246-250

    Article  ADS  Google Scholar 

  25. E. Menges, V. Hopf, H. Schäfer, and A. Weiss, Notizen: Die Kristallstruktur von LiGe—ein neuartiger, dreidimensionaler Verband von Element(IV)-atomen, Z. Naturforsch. B Chem. Sci., 1969, 24(10), p 1351

    Article  Google Scholar 

  26. U. Frank and W. Mueller, Lithium Germanide (Li11Ge6), A Phase with Isolated, plane, Five-Membered Germanium Rings, Z. Naturforsch. B Chem. Sci., 1975, 30b(5-6), p 313-315

    Google Scholar 

  27. R. Nesper, J. Curda, and H.G. Von Schnering, Lithium Magnesium Silicide (Li8MgSi6), A Novel Zintl Compound Containing Quasi-Aromatic Si5 Rings, J. Solid State Chem., 1986, 62(2), p 199-206

    Article  ADS  Google Scholar 

  28. E.M. Pell, Solubility of Lithium in Germanium, J. Phys. Chem. Solids, 1957, 3(1–2), p 74-76

    Article  ADS  Google Scholar 

  29. H. Reiss, C.S. Fuller, and F.J. Morin, Chemical Interactions Among Defects in Germanium and Silicon, Bell Syst. Tech. J., 1956, 35(3), p 535-636

    Article  Google Scholar 

  30. H. Reiss and C.S. Fuller, The Effect of Ion Pair and Ion Triplet Formation on the Solubility of Lithium in Germanium—Effect of Gallium and Zinc, J. Phys. Chem. Solids, 1958, 4(1), p 58-67

    Article  ADS  Google Scholar 

  31. R.N. Hall, Variation of the Distribution Coefficient and Solid Solubility with Temperature, J. Phys. Chem. Solids, 1957, 3(1), p 63-73

    Article  ADS  Google Scholar 

  32. F.J. Morin and H. Reiss, Precipitation of Lithium in Germanium, J. Phys. Chem. Solids, 1957, 3(3), p 186-209

    Article  ADS  Google Scholar 

  33. F.A. Trumbore, Solid Solubilities of Impurity Elements in Germanium and Silicon, Bell Syst. Tech. J., 1960, 39(1), p 205-233

    Article  Google Scholar 

  34. G.H.R. Kegel, R.J. Laramee, and B.D. Bhardwaj, The Free Energy of Mixing in the Lithium–Germanium Binary System, J. Electrochem. Soc., 1971, 118(10), p 1662-1665

    Article  Google Scholar 

  35. P.I. Fedorov and V.A. Molochko, Lithium–Germanium System, Izv. Akad. Nauk SSSR, Neorg. Mater., 1966, 2(10), p 1870-1871

    Google Scholar 

  36. B.B. Pavluk, G.S. Dmytriv, and O.I. Bodak, Phase Equilibria in the Li-Al-Ge System at 470 K, Dopovidi Akad. Nauk Ukr., 1993, 8, p 84-86

    Google Scholar 

  37. O. Bodak, Al-Ge-Li (Aluminium–Germanium–Lithium), Light Metal Systems. Part 3: Selected Systems from Al-Fe-V to Al-Ni-Zr, G. Effenberg and S. Ilyenko, Ed., Springer, Berlin, 2005, p 1-6

    Google Scholar 

  38. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15(4), p 317-425

    Article  Google Scholar 

  39. O. Redlich and A.T. Kister, Thermodynamics of Nonelectrolytic Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40(2), p 345-348

    Article  Google Scholar 

  40. G. Kaptay, A New Equation for the Temperature Dependence of the Excess Gibbs Energy of Solution Phases, CALPHAD, 2004, 28(2), p 115-124

    Article  Google Scholar 

  41. G. Kaptay, The Exponential Excess Gibbs Energy Model Revisited, CALPHAD, 2017, 56, p 169-184

    Article  Google Scholar 

  42. R. Arroyave and Z.K. Liu, Thermodynamic Modelling of the Zn-Zr System, CALPHAD, 2006, 30(1), p 1-13

    Article  Google Scholar 

  43. H. Ran, Z. Du, C. Guo, and C. Li, Thermodynamic Modeling of the Ru-Zr System, J. Alloys Compd., 2008, 464(1–2), p 127-132

    Article  Google Scholar 

  44. Y. Gao, C. Guo, C. Li, S. Cui, and Z. Du, Thermodynamic Modeling of the Ru-Ti System, J. Alloys Compd., 2009, 479(1–2), p 148-151

    Article  Google Scholar 

  45. M. Li, C. Guo, C. Li, and Z. Du, A Thermodynamic Description of the Cr-Ge System, J. Alloys Compd., 2009, 481(1–2), p 283-290

    Article  Google Scholar 

  46. X. Yuan, W. Sun, Y. Du, D. Zhao, and H. Yang, Thermodynamic Modeling of the Mg-Si System with the Kaptay Equation for the Excess Gibbs Energy of the Liquid Phase, CALPHAD, 2009, 33(4), p 673-678

    Article  Google Scholar 

  47. Y. Tang, Y. Du, L. Zhang, X. Yuan, and G. Kaptay, Thermodynamic Description of the Al-Mg-Si System Using a New Formulation for the Temperature Dependence of the Excess Gibbs Energy, Thermochim. Acta, 2012, 527, p 131-142

    Article  Google Scholar 

  48. B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, CALPHAD, 1985, 9(2), p 153-190

    Article  Google Scholar 

  49. P. Zhou, S. Liu, P. Wang, H. Xu, Y. Peng, X. Yuan, Y. Du, J. Zhang, and W. Huang, Experimental Investigation and Thermodynamic Assessment of the Hf-Mn System, J. Phase Equilib. Diff., 2012, 33(1), p 20-28

    Article  Google Scholar 

  50. M. Wang, W. Sun, C. Sha, B. Hu, Y. Du, L. Sun, H. Xu, J. Wang, and S. Liu, Thermodynamic Modeling of the Li-H and Ca-H Systems, J. Phase Equilib. Diff., 2012, 33(2), p 89-96

    Article  Google Scholar 

  51. M.H. Braga, L.F. Malheiros, and I. Ansara, Thermodynamic Assessment of the Li-Si System, J. Phase Equilib., 1995, 16(4), p 324-330

    Article  Google Scholar 

  52. A.J. Morris, C.P. Grey, and C.J. Pickard, Thermodynamically Stable Lithium Silicides and Germanides from Density Functional Theory Calculations, Phys. Rev. B, 2014, 90(5), p 054111

    Article  ADS  Google Scholar 

  53. W.W. Tipton, C.A. Matulis, and R.G. Hennig, Ab Initio Prediction of the Li5Ge2 Zintl Compound, Comput. Mater. Sci., 2014, 93, p 133-136

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant No. 51429101) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Du, Y., Peng, Y. et al. A Thermodynamic Assessment of the Li-Ge System. J. Phase Equilib. Diffus. 39, 315–323 (2018). https://doi.org/10.1007/s11669-018-0632-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0632-5

Keywords

Navigation