Skip to main content
Log in

A correlative classifiers approach based on particle filter and sample set for tracking occluded target

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D Achlioptas. Database-friendly random projections, Proceedings of the 20th ACM SIGMODSIGACT-SIGART symposium on Principles of database systems, 2001, 274–281.

    Google Scholar 

  2. M Arulampalam, S Maskell, N Gordon, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans Signal Process, 2002, 50(2): 174–188.

    Article  Google Scholar 

  3. B Babenko, M Yang, S Belongie. Visual tracking with online multiple instance learning, 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, 983–990.

    Chapter  Google Scholar 

  4. C Bailer, A Pagani, D Stricker. A superior tracking approach: Building a strong tracker through fusion, 2014 European Conference on Computer Vision, 2014, 170–185.

    Google Scholar 

  5. C Bao, Y Wu, H Ling, et al. Real time robust l1 tracker using accelerated proximal gradient approach, 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, 1830–1837.

    Google Scholar 

  6. R Baraniuk, M Davenport, R Devore, et al. A simple proof of the restricted isometry property for random matrices, Constr Approx, 2008, 28(3): 253–263.

    Article  MathSciNet  MATH  Google Scholar 

  7. M Berger, L Seversky. Subspace tracking under dynamic dimensionality for online background subtraction, 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 1274–1281.

    Chapter  Google Scholar 

  8. A Bordes, L Bottou, P Gallinari, et al. Solving multiclass support vector machines with LaRank, Proceedings of the 24th international conference on Machine learning, 2007, 89–96.

    Google Scholar 

  9. A Bordes, N Usunier, L Bottou. Sequence labelling S V Ms trained in one pass, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2008, 146–161.

    Chapter  Google Scholar 

  10. Y Chen, F He, Y Wu, et al. A local start search algorithm to compute exact Hausdorff Distance for arbitrary point sets, Pattern Recogn, 2017, 67: 139–148.

    Article  Google Scholar 

  11. Y Cheng, F He, Y Wu, et al. Meta-operation conflict resolution for human-human interaction in collaborative feature-based C A D systems, Cluster Comput, 2016, 19(1): 237–253.

    Article  Google Scholar 

  12. M Danelljan, F S Khan, M Felsberg, et al. Adaptive color attributes for real-time visual tracking, 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 1090–1097.

    Chapter  Google Scholar 

  13. J Gao, H Ling, W Hu, et al. Transfer learning based visual tracking with Gaussian processes regression, 2014 European Conference on Computer Vision, 2014, 188–203.

    Google Scholar 

  14. N Gordon, D Salmond, A Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings F-Radar and Signal Processing, 1993, 107–113.

    Google Scholar 

  15. D Hall, P Perona. Online, real-time tracking using a category-to-individual detector, 2014 European Conference on Computer Vision, 2014, 361–376.

    Google Scholar 

  16. S Hare, A Saffari, P Torr. Struck: Structured output tracking with kernels, 2011 IEEE International Conference on Computer Vision (ICCV), 2011, 263–270.

    Chapter  Google Scholar 

  17. J Henriques, R Caseiro, P Martins, et al. Exploiting the circulant structure of tracking-bydetection with kernels, 2012 European conference on computer vision, 2012, 702–715.

    Chapter  Google Scholar 

  18. S Hong, B Han. Visual tracking by sampling tree-structured graphical models, 2014 European Conference on Computer Vision, 2014, 1–16.

    Google Scholar 

  19. Z Huang, F He, X Cai, et al. Efficient random saliency map detection, Sci China Ser F, 2011, 54(6): 1207–1217.

    Article  Google Scholar 

  20. C Jermain, G Rowlands, R Buhrman, et al. GPU-accelerated micromagnetic simulations using cloud computing, J Magn Magn Mater, 2016, 401: 320–322.

    Article  Google Scholar 

  21. Z Kalal, J Matas, K Mikolajczyk. Pn learning: Bootstrapping binary classifiers by structural constraints, 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, 49–56.

    Chapter  Google Scholar 

  22. K Koh, S Kim, S Boyd. An interior-point method for large-scale l1-regularized logistic regression, J Mach Learn Res, 2007, 8: 1519–1555.

    MathSciNet  MATH  Google Scholar 

  23. J Kwon, K Lee. Interval tracker: Tracking by interval analysis, 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 3494–3501.

    Chapter  Google Scholar 

  24. J Kwon, J Roh, K M Lee, et al. Robust visual tracking with double bounding box model, European Conference on Computer Vision, 2014, 377–392.

    Google Scholar 

  25. D Lee, J Sim, C Kim. Visual tracking using pertinent patch selection and masking, 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 3486–3493.

    Chapter  Google Scholar 

  26. A Levey, M Lindenbaum. Sequential Karhunen-Loeve basis extraction and its application to images, IEEE Trans Image Process, 2000, 9(8): 1371–1374.

    Article  MATH  Google Scholar 

  27. K Li, F He, X Chen. Real-time object tracking via compressive feature selection, Front Comput Sci, 2016, 10(4): 689–701.

    Article  Google Scholar 

  28. Y Li, J Zhu, S Hoi. Reliable patch trackers: Robust visual tracking by exploiting reliable patches, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 353–361.

    Chapter  Google Scholar 

  29. X Li, F He, X Cai, et al. A method for topological entity matching in the integration of heterogeneous CAD systems, Integr Comput-Aid E, 2013, 20(1): 15–30.

    Google Scholar 

  30. B Liu, J Huang, L Yang, et al. Robust tracking using local sparse appearance model and kselection, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, 1313–1320.

    Google Scholar 

  31. H Liu, F He, X Cai, et al. Performance-based control interfaces using mixture of factor analyzers, Visual Comput, 2011, 27(6-8): 595–603.

    Article  Google Scholar 

  32. T Liu, G Wang, Q Yang. Real-time part-based visual tracking via adaptive correlation filters, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 4902–4912.

    Chapter  Google Scholar 

  33. Y Lu, T Wu, S Zhu. Online object tracking, learning and parsing with And-Or graphs, 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR), 2014, 3462–3469.

    Chapter  Google Scholar 

  34. X Lv, F He, W Cai, et al. A string-wise C R D T algorithm for smart and large-scale collaborative editing systems, Adv Eng Inform, 2016, DOI: 10.1016/j.aei.2016.10.005

    Google Scholar 

  35. X Mei, H Ling. Robust visual tracking using l1 minimization, 2009 IEEE 12th International Conference on Computer Vision (ICCV), 2009, 1436–1443.

    Chapter  Google Scholar 

  36. B Ni, F He, Z Yuan. Segmentation of uterine fibroid ultrasound images using a dynamic statistical shape model in H I F U therapy, Comput Med Imag Grap, 2015, 46: 302–314.

    Article  Google Scholar 

  37. B Ni, F He, Y Pan, et al. Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computer-aided therapy, Appl Math J Chinese Univ Ser B, 2016, 31(1): 37–52.

    Article  MathSciNet  MATH  Google Scholar 

  38. K Nummiaro, E Koller-Meier, L Van Gool. An adaptive color-based particle filter, Image Vision Comput, 2003, 21(1): 99–110.

    Article  MATH  Google Scholar 

  39. K Okuma, A Taleghani, N de Freitas, et al. A boosted particle filter: Multitarget detection and tracking, 2004 European Conference on Computer Vision, 2004, 28–39.

    Chapter  Google Scholar 

  40. S Oron, A Bar-Hillel, D Levi, et al. Locally orderless tracking, 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, 1940–1947.

    Chapter  Google Scholar 

  41. C Papageorgiou, T Poggio. A trainable system for object detection, Int J Comput Vision, 2000, 38(1): 15–33.

    Article  MATH  Google Scholar 

  42. H Possegger, T Mauthner, H Bischof. In defense of color-based model-free tracking, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 2113–2120.

    Chapter  Google Scholar 

  43. D A Ross, J Lim, R Lin, et al. Incremental learning for robust visual tracking, Int J Comput Vision, 2008, 77(1-3): 125–141.

    Article  Google Scholar 

  44. L Sevilla-Lara, E Learned-Miller. Distribution fields for tracking, 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, 1910–1917.

    Chapter  Google Scholar 

  45. A Smeulders, D Chu, R Cucchiara, et al. Visual tracking: an experimental survey, IEEE T Pattern Anal, 2014, 36(7): 1442–1468.

    Article  Google Scholar 

  46. J Sun, F He, Y Chen, et al. A multiple template approach for robust tracking of fast motion target, Appl Math J Chinese Univ Ser B, 2016, 31(2): 177–197.

    Article  MathSciNet  MATH  Google Scholar 

  47. D Wang, H Lu, M Yang. Least soft-thresold squares tracking, 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, 2371–2378.

    Chapter  Google Scholar 

  48. D Wang, H Lu, M Yang. Online object tracking with sparse prototypes, IEEE Trans Image Process, 2013, 22(1): 314–325.

    Article  MathSciNet  Google Scholar 

  49. D Wang, H Lu. Visual tracking via probability continuous outlier model, 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR), 2014, 3478–3485.

    Chapter  Google Scholar 

  50. L Wang, W Ouyang, X Wang, et al. Visual tracking with fully convolutional networks, 2015 IEEE International Conference on Computer Vision (ICCV), 2015, 3119–3127

    Chapter  Google Scholar 

  51. N Wang, J Wang, D Yeung. Online robust non-negative dictionary learning for visual tracking, 2013 IEEE International Conference on Computer Vision (ICCV), 2013, 657–664.

    Chapter  Google Scholar 

  52. Y Wu, J Lim, M Yang. Online object tracking: A benchmark, 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, 2411–2418.

    Chapter  Google Scholar 

  53. Y Wu, F He, D Zhang, et al. Service-oriented feature-based data exchange for cloud-based design and manufacturing, IEEE T Serv Comput, 2015, DOI: 10.1109/TSC.2015.2501981

    Google Scholar 

  54. X Yan, F He, Y Che, et al. An efficient improved particle swarm optimization based on prey behavior of fish schooling, J Adv Mech Des Syst, 2015, 9(4): JAMDSM0048.

    Article  Google Scholar 

  55. X Yan, F He, N Hou. A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization, J Comput Sci Tech, 2017, 32(2): 340–355.

    Article  Google Scholar 

  56. X Yan, F He, N Hou, H Ai. An efficient particle swarm optimization for large scale hardware/software co-design system, Int J Coop Info Syst, 2017, 26(2): 1742001.

    Article  Google Scholar 

  57. H Yang, L Shao, F Zheng, et al. Recent advances and trends in visual tracking: A review, Neurocomputing, 2011, 74(18): 3823–3831.

    Article  Google Scholar 

  58. A Yilmaz, O Javed, M Shah. Object tracking: A survey, ACM Comput Surv (CSUR), 2006, 38(4): 13.

    Article  Google Scholar 

  59. H Yu, F He, Y Pan, et al. An efficient similarity-based level set model for medical image segmentation, J Adv Mech Des Syst, 2016, 10(8): JAMDSM0100.

    Article  Google Scholar 

  60. D Zhang, F He, S Han, et al. Quantitative optimization of interoperability during feature-based data exchange, Integr Comput-Aid E, 2016, 23(1): 31–50.

    Article  Google Scholar 

  61. J Zhang, S Ma, S Sclaroff. MEEM: Robust tracking via multiple experts using entropy minimization, 2014 European Conference on Computer Vision, 2014, 188–203.

    Google Scholar 

  62. K Zhang, L Zhang, M Yang. Real-time compressive tracking, 2012 European Conference on Computer Vision, 2012, 864–877.

    Chapter  Google Scholar 

  63. K Zhang, L Zhang, Q Liu, et al. Fast visual tracking via dense spatio-temporal context learning, 2014 European Conference on Computer Vision, 2014, 127–141.

    Google Scholar 

  64. T Zhang, S Liu, C Xu, et al. Structural sparse tracking, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 150–158.

    Chapter  Google Scholar 

  65. T Zhang, K Jia, C Xu, et al. Partial occlusion handling for visual tracking via robust part matching, 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 1258–1265.

    Chapter  Google Scholar 

  66. Z Zhang, K Wong. Pyramid-based visual tracking using sparsity represented mean transform, 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 1226–1233.

    Chapter  Google Scholar 

  67. W Zhong, H Lu, M Yang. Robust object tracking via sparsity-based collaborative model, 2012 IEEE Conference on Computer vision and pattern recognition (CVPR), 2012, 1838–1845.

    Chapter  Google Scholar 

  68. Y Zhou, F He, Y Qiu. Optimization of parallel iterated local search algorithms on graphics processing unit, J Supercomput, 2016, 72(6): 2394–2416.

    Article  Google Scholar 

  69. Y Zhou, F He, Y Qiu. Dynamic strategy based parallel ant colony optimization on GPUs for TSPs, Sci China Ser F, 2017, 60(6): 068102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa-zhi He.

Additional information

This paper is supported by the National Science Foundation of China (61472289), National Key Research and Development Project (2016YFC0106305), and The Key Technology R&D Program of Hubei Provence (2014BAA153).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., He, Fz., Yu, Hp. et al. A correlative classifiers approach based on particle filter and sample set for tracking occluded target. Appl. Math. J. Chin. Univ. 32, 294–312 (2017). https://doi.org/10.1007/s11766-017-3466-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-017-3466-8

MR Subject Classification

Keywords

Navigation