Skip to main content
Log in

A Novel Method to Fabricate High Strength Nanofiber Filaments: Morphology, Crystalline Structure, and Thermal and Mechanical Properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Wet electrospinning is a simple and efficient method to manufacture continuous nanofiber filaments. However, polyacrylonitrile nanofiber filaments collected using a static water bath are limited for application in certain areas due to their low degree of alignment and breaking stress values. To improve these properties, a novel countercurrent flowing liquid bath collector was combined with a multi-needle electrospinning device. The morphologies, crystalline structures, thermal behaviors and mechanical properties of filaments fabricated under different countercurrent bath liquid motion conditions were investigated. In addition, the forces acting on the nanofibers in the bundling triangular zone under countercurrent liquid bath motion were analyzed. The results showed that the average nanofiber diameter of the filaments decreased with an increase in bath solution motion forces. The maximum alignment degree and breaking stress of the nanofibers were 85 % and 0.63 cN/dtex, respectively, achieved using a liquid flow rate of 80 ml/min and water inlet diameter of 6 mm. The alignment degree of the assembled nanofibers in the bundling triangular zone could be increased by 57 % when using a countercurrent flowing liquid compared with a static liquid bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, X. G. Wang, and T. Lin, J. Mater. Res., 27, 3013 (2012).

    Article  CAS  Google Scholar 

  2. R. Dersch, T. Q. Liu, A. K. Schaper, A. Greiner, and J. H. Wendorff, J. Polym. Sci. Pol. Chem., 41, 545 (2003).

    Article  CAS  Google Scholar 

  3. Y. Li, J. Zhang, C. Xu, and Y. F. Zhou, Science China-Chemistry, 59, 95 (2016).

    Article  CAS  Google Scholar 

  4. A. Arinstein and E. Zussman, J. Polym. Sci. Pol. Phys., 49, 691 (2011).

    Article  CAS  Google Scholar 

  5. F. L. Zhou, R. H. Gong, and I. Porat, J. Mater. Sci., 44, 5501 (2009).

    Article  CAS  Google Scholar 

  6. F. L. Zhou, R. H. Gong, and I. Porat, Polym. Int., 58, 331 (2009).

    Article  CAS  Google Scholar 

  7. H. T. Niu, W. M. Gao, T. Lin, X. G. Wang, and L. X. Kong, Polym. Eng. Sci., 54, 1495 (2014).

    Article  CAS  Google Scholar 

  8. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. H. Ye, G. L. Yang, C. Li, and P. Willis, Adv. Mater., 15, 1161 (2003).

    Article  CAS  Google Scholar 

  9. J. H. Lee, D. W. Shin, K. B. Nam, Y. H. Gim, H. S. Ko, D. K. Seo, G. Hui lee, Y. H. Kim, S. W. Kim, T. S. Oh, and J. B. Yoo, Polymer, 84, 52 (2016).

    Article  CAS  Google Scholar 

  10. L. Tian, J. Li, and Z. J. Pan, Adv. Mater. Res., 796, 306 (2013).

    Article  Google Scholar 

  11. S. Ma, J. Liu, Q. Liu, J. Liang, Y. Zhao, and H. Fong, Mater. Des., 95, 387 (2016).

    Article  CAS  Google Scholar 

  12. M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, and K. H. Lee, J. Biomed. Mater. Res. B, 72B, 117 (2005).

    Article  CAS  Google Scholar 

  13. Y. Liu, J. Li, and Z. J. Pan, J. Polym. Res., 18, 2055 (2011).

    Article  CAS  Google Scholar 

  14. A. Varesano, F. Rombaldoni, G. Mazzuchetti, C. Tonin, and R. Comotto, Polym. Int., 59, 1606 (2010).

    Article  CAS  Google Scholar 

  15. E. Smit, U. Buttner, and R. D. Sanderson, Polymer, 46, 2419 (2005).

    Article  CAS  Google Scholar 

  16. L. Tian, C. Zhao, and Z. Pan, Sci. Adv. Mater., 7, 2327 (2015).

    Article  CAS  Google Scholar 

  17. J. Liu, L. He, S. Ma, J. Liang, Y. Zhao, and H. Fong, Polymer, 61, 20 (2015).

    Article  CAS  Google Scholar 

  18. J. S. Youm, J. H. Kim, C. H. Kim, J. C. Kim, Y. A. Kim, and K. S. Yang, J. Appl. Polym. Sci., 133 (2016).

  19. X. F. Wang, K. Zhang, M. F. Zhu, B. J. S. Hsiao, and B. J. Chu, Macromol. Rapid Commun., 29, 826 (2008).

    Article  CAS  Google Scholar 

  20. C. Liu, Highpolymer Mater. Sci. Eng., 27, 94 (2011).

    CAS  Google Scholar 

  21. D.-N. Nguyen, Y. Hwang, and W. Moon, Eur. Polym. J., 77, 54 (2016).

    Article  CAS  Google Scholar 

  22. W. E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara, and S. Ramakrishna, Polymer, 48, 3400 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-juan Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yq., Zhang, X. & Pan, Zj. A Novel Method to Fabricate High Strength Nanofiber Filaments: Morphology, Crystalline Structure, and Thermal and Mechanical Properties. Fibers Polym 19, 1245–1254 (2018). https://doi.org/10.1007/s12221-018-8011-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8011-8

Keywords

Navigation