Skip to main content
Log in

Atomic-scale observation of a two-stage oxidation process in Cu2O

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomic-scale oxidation dynamics of Cu2O nanocrystallines (NCs) are directly observed by in situ high-resolution transmission electron microscopy. A two-stage oxidation process is observed: (1) The initial oxidation stage is dominated by the dislocation-mediated oxidation behavior of Cu2O NCs via solid-solid transformations, leading to the formation of a new intermediate CuO x phase. The possible crystal structure of the CuO x phase is discussed. (2) Subsequently, CuO x is transformed into CuO by layer-by-layer oxidation. These results will help in understanding the oxidation mechanisms of copper oxides and pave the way for improving their structural diversity and exploiting their potential industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, J. S.; Steier, L.; Son, M. K.; Schreier, M.; Mayer, M. T.; Grätzel, M. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 2016, 16, 1848–1857.

    Article  Google Scholar 

  2. Sheng, H. P.; Zheng, H.; Cao, F.; Wu, S. J.; Li, L.; Liu, C.; Zhao, D. S.; Wang, J. B. Anelasticity of twinned CuO nanowires. Nano Res. 2015, 8, 3687–3693.

    Article  Google Scholar 

  3. Zhang, Q. B.; Zhang, K. L.; Xu, D. G.; Yang, G. C.; Huang, H.; Nie, F. D.; Liu, C. M.; Yang, S. H. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208–337.

    Article  Google Scholar 

  4. Park, J. C.; Kim, J.; Kwon, H.; Song, H. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 2009, 21, 803–807.

    Article  Google Scholar 

  5. Wang, L. L.; Gong, H. X.; Wang, C. H.; Wang, D. K.; Tang, K. B.; Qian, Y. T. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity. Nanoscale 2012, 4, 6850–6855.

    Article  Google Scholar 

  6. Florica, C.; Costas, A.; Boni, A. G.; Negrea, R.; Ion, L.; Preda, N.; Pintilie, L.; Enculescu, I. Electrical properties of single CuO nanowires for device fabrication: Diodes and field effect transistors. Appl. Phys. Lett. 2015, 106, 223501.

    Article  Google Scholar 

  7. Jang, H. S.; Kim, S. J.; Choi, K. S. Construction of cuprous oxide electrodes composed of 2D single-crystalline dendritic nanosheets. Small 2010, 6, 2183–2190.

    Article  Google Scholar 

  8. Wang, C.; Wang, Y. Q.; Liu, X. H.; Diao, F. Y.; Yuan, L.; Zhou, G. W. Novel hybrid nanocomposites of polyhedral Cu2O nanoparticles-CuO nanowires with enhanced photoactivity. Phys. Chem. Chem. Phys. 2014, 16, 17487–17492.

    Article  Google Scholar 

  9. Yuan, L.; Yin, Q. Y.; Wang, Y. Q.; Zhou, G. W. CuO reduction induced formation of CuO/Cu2O hybrid oxides. Chem. Phys. Lett. 2013, 590, 92–96.

    Article  Google Scholar 

  10. Na, Y.; Lee, S. W.; Roy, N.; Pradhan, D.; Sohn, Y. Room temperature light-induced recrystallization of Cu2O cubes to CuO nanostructures in water. CrystEngComm 2014, 16, 8546–8554.

    Article  Google Scholar 

  11. Yuan, L.; Wang, Y. Q.; Mema, R.; Zhou, G. W. Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 2011, 59, 2491–2500.

    Article  Google Scholar 

  12. Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820.

    Article  Google Scholar 

  13. Zhu, H. L.; Zhang, J. Y.; Li, C. Z.; Pan, F.; Wang, T. M.; Huang, B. B. Cu2O thin films deposited by reactive direct current magnetron sputtering. Thin Solid Films 2009, 517, 5700–5704.

    Article  Google Scholar 

  14. Yuan, W. T.; Yu, J.; Li, H. B.; Zhang, Z.; Sun, C. H.; Wang, Y. In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen. Nano Res. 2017, 10, 397–404.

    Article  Google Scholar 

  15. Li, C.; Yao, Y.; Shen, X.; Wang, Y. G.; Li, J. J.; Gu, C. Z.; Yu, R. C.; Liu, Q.; Liu, M. Dynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy. Nano Res. 2015, 8, 3571–3579.

    Article  Google Scholar 

  16. Tian, X. Z.; Wang, L. F.; Wei, J. K.; Yang, S. Z.; Wang, W. L.; Xu, Z.; Bai, X. D. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Res. 2014, 7, 1065–1072.

    Article  Google Scholar 

  17. Lenrick, F.; Ek, M.; Deppert, K.; Samuelson, L.; Reine Wallenberg, L. Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy. Nano Res. 2014, 7, 1188–1194.

    Article  Google Scholar 

  18. Huang, C. W.; Chen, J. Y.; Chiu, C. H.; Hsin, C. L.; Tseng, T. Y.; Wu, W. W. Observing the evolution of graphene layers at high current density. Nano Res. 2016, 9, 3663–3670.

    Article  Google Scholar 

  19. Sheng, H. P.; Zheng, H.; Jia, S. F.; Li, L.; Cao, F.; Wu, S. J.; Han, W.; Liu, H. H.; Zhao, D. S.; Wang, J. B. Twin structures in CuO nanowires. J. Appl. Cryst. 2016, 49, 462–467.

    Article  Google Scholar 

  20. Zheng, H.; Wu, S. J.; Sheng, H. P.; Liu, C.; Liu, Y.; Cao, F.; Zhou, Z. C.; Zhao, X. Z.; Zhao, D. S.; Wang, J. B. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Appl. Phys. Lett. 2014, 104, 141906.

    Article  Google Scholar 

  21. Filipič, G.; Cvelbar, U. Copper oxide nanowires: A review of growth. Nanotechnology 2012, 23, 194001.

    Article  Google Scholar 

  22. Ta, H. Q.; Bachmatiuk, A.; Warner, J. H.; Zhao, L.; Sun, Y. H.; Zhao, J.; Gemming, T.; Trzebicka, B.; Liu, Z. F.; Pribat, D. et al. Electron-driven metal oxide effusion and graphene gasification at room temperature. ACS Nano 2016, 10, 6323–6330.

    Article  Google Scholar 

  23. Wang, J. B.; Li, L. Y.; Xiong, D. X.; Wang, R. H.; Zhao, D. S.; Min, C. P.; Yu, Y.; Ma, L. L. High spatially resolved morphological, structural and spectroscopical studies on copper oxide nanocrystals. Nanotechnology 2007, 18, 075705.

    Article  Google Scholar 

  24. Takagaki, Y.; Herrmann, C.; Jenichen, B.; Brandt, O. Epitaxial orientation of MnAs layers grown on GaAs surfaces by means of solid-state crystallization. Phys. Rev. B 2008, 78, 064115.

    Article  Google Scholar 

  25. Lu, L.; Wang, J. B.; Zheng, H.; Zhao, D. S.; Wang, R. H.; Gui, J. N. Spontaneous formation of filamentary Cd whiskers and degradation of CdMgYb icosahedral quasicrystal under ambient conditions. J. Mater. Res. 2012, 27, 1895–1904.

    Article  Google Scholar 

  26. Ulvestad, A.; Singer, A.; Clark, J. N.; Cho, H. M.; Kim, J. W.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Topological defect dynamics in operando battery nanoparticles. Science 2015, 348, 1344–1347.

    Article  Google Scholar 

  27. Cahn, J. W. Nucleation on dislocations. Acta Metall. 1957, 5, 169–172.

    Article  Google Scholar 

  28. Rodriguez, J. A.; Kim, J. Y.; Hanson, J. C.; Pérez, M.; Frenkel, A. I. Reduction of CuO in H2: In situ time-resolved XRD studies. Catal. Lett. 2003, 85, 247–254.

    Article  Google Scholar 

  29. Zhou, G. W.; Luo, L. L.; Li, L.; Ciston, J.; Stach, E. A.; Yang, J. C. Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 2012, 109, 235502.

    Article  Google Scholar 

  30. Yin, K. B.; Zhang, Y. Y.; Zhou, Y. L.; Sun, L. T.; Chisholm, M. F.; Pantelides, S. T.; Zhou, W. Unsupported singleatom- thick copper oxide monolayers. 2D Mater. 2017, 4, 011001.

    Article  Google Scholar 

  31. Rackauskas, S.; Jiang, H.; Wagner, J. B.; Shandakov, S. D.; Hansen, T. W.; Kauppinen, E. I.; Nasibulin, A. G. In situ study of noncatalytic metal oxide nanowire growth. Nano Lett. 2014, 14, 5810–5813.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2011CB933300), the National Natural Science Foundation of China (Nos. 51671148, 51271134, J1210061, 11674251, 51501132, and 51601132), the Hubei Provincial Natural Science Foundation of China (Nos. 2016CFB446 and 2016CFB155), the Fundamental Research Funds for the Central Universities, and the CERS-1-26 (CERS-China Equipment and Education Resources System), and the China Postdoctoral Science Foundation (No. 2014T70734), and the Open Research Fund of Science and Technology on High Strength Structural Materials Laboratory (Central South University) and the Suzhou Science and Technology project (No. SYG201619).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuangfeng Jia or Jianbo Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zheng, H., Li, L. et al. Atomic-scale observation of a two-stage oxidation process in Cu2O. Nano Res. 10, 2344–2350 (2017). https://doi.org/10.1007/s12274-017-1429-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1429-2

Keywords

Navigation