Skip to main content
Log in

A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, development of all-solid-state batteries has become a promising approach to improve the safety of batteries. Herein, we report the preparation of a new composite polymer electrolyte (CPE) for use in all-solid-state sodium ion batteries. The CPE comprising of poly(methacrylate) (PMA), poly(ethylene glycol) (PEG), α-Al2O3 with acidic surface sites, and NaClO4 exhibited high ionic conductivity (1.46 × 10-4 S·cm-1 at 70 °C), wide electrochemical stability window (4.5 V vs. Na+/Na), and good mechanical strength. With the introduction of the prepared CPE and Na3V2(PO4)3, the final all-solid-state sodium ion batteries showed good rate and cycle performance, with a high reversible capacity of 85 mAh·g-1 when operated at 0.5 C (1 C = 118 mA·g–1) and 94.1% capacity retention rate after 350 cycles at 70 °C. Our work provides a novel solid electrolyte for the development of all-solid-state sodium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodiumion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  Google Scholar 

  2. Ling, L. M.; Bai, Y.; Wang, H. L.; Ni, Q.; Zhang, J. T.; Wu, F.; Wu, C. Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. Nano Res. 2018, 11, 1563–1574.

    Article  Google Scholar 

  3. Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

    Article  Google Scholar 

  4. Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

    Article  Google Scholar 

  5. Yang, C. P.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L. B. Protected lithium-metal anodes in batteries: From liquid to solid. Adv. Mater. 2017, 29, 1701169.

    Article  Google Scholar 

  6. Choi, H.; Kim, H. W.; Ki, J. K.; Lim, Y. J.; Kim, Y.; Ahn, J. H. Nanocomposite quasi-solid-state electrolyte for highsafety lithium batteries. Nano Res. 2017, 10, 3092–3102.

    Article  Google Scholar 

  7. Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

    Article  Google Scholar 

  8. Farrington, G. C.; Briant, J. L. Fast ionic transport in solids. Scienc. 1979, 204, 1371–1379.

    Article  Google Scholar 

  9. Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 2014, 13, 69–73.

    Article  Google Scholar 

  10. Fullerton-Shirey, S. K.; Maranas, J. K. Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecule. 2009, 42, 2142–2156.

    Article  Google Scholar 

  11. Depre, L.; Kappel, J.; Popall, M. Inorganic–organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods. Electrochim. Act. 1998, 43, 1301–1306.

    Article  Google Scholar 

  12. Honma, I.; Hirakawa, S.; Yamada, K.; Bae, J. M. Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes. Solid State Ionic. 1999, 118, 29–36.

    Article  Google Scholar 

  13. Gupta, R. K.; Jung, H. Y.; Whang, C. M. Transport properties of a new Li+ ion-conducting ormolyte: (SiO2-PEG)-LiCF3SO3. J. Mater. Chem. 2002, 12, 3779–3782.

    Article  Google Scholar 

  14. Singh, M.; Odusanya, O.; Wilmes, G. M.; Eitouni, H. B.; Gomez, E. D.; Patel, A. J.; Chen, V. L.; Park, M. J.; Fragouli, P.; Iatrou, H. et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecule. 2007, 40, 4578–4585.

    Article  Google Scholar 

  15. Wanakule, N. S.; Panday, A.; Mullin, S. A.; Gann, E.; Hexemer, A; Balsara, N. P. Ionic conductivity of block copolymer electrolytes in the vicinity of order-disorder and order-order transitions. Macromolecule. 2009, 42, 5642–5651.

    Article  Google Scholar 

  16. Gomez, E. D.; Panday, A.; Feng, E. H.; Chen, V.; Stone, G. M.; Minor, A. M.; Kisielowski, C.; Downing, K. H.; Borodin, O.; Smith, G. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 2009, 9, 1212–1216.

    Article  Google Scholar 

  17. Choi, I.; Ahn, H.; Park, M. J. Enhanced performance in lithium-polymer batteries using surface-functionalized Si nanoparticle anodes and self-assembled block copolymer electrolytes. Macromolecule. 2011, 44, 7327–7334.

    Article  Google Scholar 

  18. Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457.

    Article  Google Scholar 

  19. Sun, J.; Liao, X. X.; Minor, A. M.; Balsara, N. P.; Zuckermann, R. N. Morphology-conductivity relationship in crystalline and amorphous sequence-defined peptoid block copolymer electrolytes. J. Am. Chem. Soc. 2014, 136, 14990–14997.

    Article  Google Scholar 

  20. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Natur. 1998, 394, 456–458.

    Article  Google Scholar 

  21. Zhou, W. D.; Gao, H.C.; Goodenough, J. B. Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries. Adv. Energy Mater. 2016, 6, 1501802.

    Article  Google Scholar 

  22. Gowneni, S.; Ramanjaneyulu, K.; Basak, P. Polymernanocomposite brush-like architectures as an all-solid electrolyte matrix. ACS Nan. 2014, 8, 11409–11424.

    Article  Google Scholar 

  23. Zhang, Z. Z.; Zhang, Q. Q.; Ren, C.; Luo, F.; Ma, Q.; Hu, Y. S.; Zhou, Z. B.; Li, H.; Huang, X. J.; Chen, L. Q. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem.. 2016, 4, 15823–15828.

    Article  Google Scholar 

  24. Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

    Article  Google Scholar 

  25. Song, J. Y.; Wang, Y. Y.; Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sourc. 1999, 77, 183–197.

    Article  Google Scholar 

  26. Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42.

    Article  Google Scholar 

  27. Zhao, C. L.; Liu, L. L.; Qi, X. G.; Lu, Y. X.; Wu, F. X.; Zhao, J. M.; Yu, Y.; Hu, Y. S.; Chen, L. Q. Solid-state sodium batteries. Adv. Energy Mater. 2018, 8, 1703012.

    Article  Google Scholar 

  28. Huang, W. W.; Zhu, Z. Q.; Wang, L. J.; Wang, S. W.; Li, H.; Tao, Z. L.; Shi, J. F.; Guan, L. H.; Chen, J. Quasisolid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angew. Chem., Int. Ed. 2013, 52, 9162–9166.

    Article  Google Scholar 

  29. Shi. J. F.; Peng, S. J.; Pei, J.; Liang, Y. L.; Cheng, F. Y.; Chen, J. Quasi-solid-state dye-sensitized solar cells with polymer gel electrolyte and triphenylamine-based organic dyes. ACS Appl. Mater. Interface. 2009, 1, 944–950.

    Article  Google Scholar 

  30. Zhu, Z. Q.; Hong, M. L.; Guo, D. S.; Shi, J. F.; Tao, Z. L.; Chen, J. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 2014, 136, 16461–16464.

    Article  Google Scholar 

  31. Hu, X. F.; Li, Z. F.; Chen, J. Flexible Li-CO2 batteries with liquid-free electrolyte. Angew. Chem., Int. Ed. 2017, 56, 5785–5789.

    Article  Google Scholar 

  32. Liang, J. Z. Predictions of Young’s modulus of inorganic fibrous particulate-reinforced polymer composites. J. Appl. Polym. Sci. 2013, 130, 2957–2961.

    Article  Google Scholar 

  33. Jakobsen, J.; Jensen, M.; Andreasen, J. H. Thermomechanical characterisation of in-plane properties for CSM E-glass epoxy polymer composite materials-Part 2: Young’s modulus. Polym. Test. 2013, 32, 1417–1422.

    Article  Google Scholar 

  34. Wodtke, M.; Wasilczuk, M. Evaluation of apparent Young’s modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings. Tribol. Int. 2016, 97, 244–252.

    Article  Google Scholar 

  35. Lu, Y. Y.; Korf, K.; Kambe, Y.; Tu, Z. Y.; Archer, L. A. Ionic-liquid-nanoparticle hybrid electrolytes: Applications in lithium metal batteries. Angew. Chem., Int. Ed. 2014, 53, 488–492.

    Article  Google Scholar 

  36. Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickson, M. A. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Act. 2001, 46, 2457–2461.

    Article  Google Scholar 

  37. Ganapatibhotla, L. V. N. R.; Maranas, J. K. Interplay of surface chemistry and ion content in nanoparticle-filled solid polymer electrolytes. Macromolecule. 2014, 47, 3625–3634.

    Article  Google Scholar 

  38. Srivastava, S.; Schaefer, J. L.; Yang, Z. C.; Tu, Z. Y.; Archer, L. A. 25th anniversary article: Polymer-particle composites: Phase stability and applications in electrochemical energy storage. Adv. Mater. 2014, 26, 201–234.

    Article  Google Scholar 

  39. Salomon, M.; Xu, M. Z.; Eyring, E. M.; Petrucci, S. Molecular structure and dynamics of LiClO4-polyethylene oxide-400 (dimethyl ether and diglycol systems) at 25 °C. J. Phys. Chem. 1994, 98, 8234–8244.

    Article  Google Scholar 

  40. Xiong, H. M.; Zhao, X.; Chen, J. S. New polymer-inorganic nanocomposites: PEO-ZnO and PEO-ZnO-LiClO4 films. J. Phys. Chem.. 2001, 105, 10169–10174.

    Article  Google Scholar 

  41. Wang, X. L.; Fan, L. Z.; Mei, A.; Ma, F. Y.; Lin, Y. H.; Nan, C. W. Ionic transport behavior in poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) and LiClO4 complex. Electrochim. Act. 2008, 53, 2448–2452.

    Article  Google Scholar 

  42. Liu, W.; Liu, N.; Sun, J.; Hsu, P. C.; Li, Y. Z.; Lee, H. W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745.

    Article  Google Scholar 

  43. Wang, H. B.; Zhang, T. R.; Chen, C.; Ling, M.; Lin, Z.; Zhang, S. Q.; Pan, F.; Liang, C. D. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Res. 2018, 11, 490–498.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program (Nos. 2016YFB0901502 and 2016YFB0101201), the National Natural Science Foundation of China (NSFC) (No. 51771094), MOE (Nos. B12015 and IRT13R30), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanliang Tao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, X., Liu, S. et al. A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Res. 11, 6244–6251 (2018). https://doi.org/10.1007/s12274-018-2144-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2144-3

Keywords

Navigation