Skip to main content
Log in

Auxin signaling is involved in iron deficiency-induced photosynthetic inhibition and shoot growth defect in rice (Oryza sativa L.)

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Iron deficiency is one of the most serious nutrient limiting factors that affect rice plant growth and photosynthesis. Several phytohormones, including auxin, participate in iron uptake and homeostasis. However, how auxin signaling is involved in iron deficiency-induced inhibition of shoot growth and photosynthetic efficiency is largely unknown. The Nipponbare (NIP) seedlings displayed typical chlorotic symptoms, biomass reduction and photosynthesis depression when subjected to iron deficiency. We measured the soluble Fe content in the shoots under different conditions. The soluble Fe content in the shoots under Fe deficiency was increased by 1-naphthoxyaceticacids (1-NOA) treatment and was decreased by 1-naphthaleneacetic acid (NAA) treatment. Blocking (1-NOA treatment) or enhancement (NAA treatment) of auxin signaling also affects photosynthetic parameters under Fe deficiency conditions. Furthermore, rice microarray data (GSE17245 and GSE39429) were used to analyze the relationship between iron deficiency responses and auxin signaling in shoots. Most iron deficiency response gene expression levels in the shoots increased under exogenous auxin treatment, and most auxin early response gene expression levels responded to iron deficiency. It suggested that there is a crosstalk between iron deficiency signaling and auxin signaling. Our results indicated that iron deciencyinduced growth inhibition and photosynthesis depression were mediated by systemic auxin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2009) OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70:681–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bacaicoa E, Mora V, Zamarreno AM, Fuentes M, Casanova E, Garcia-Mina JM (2011) Auxin: a major player in the shoot-toroot regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants. Plant Physiol Biochem 49:545–556

    Article  CAS  PubMed  Google Scholar 

  • Bacaicoa E, Zamarreño ÁM, Leménager D, Baigorri R, García-Mina JM (2009) Relationship between the Hormonal Balance and the Regulation of Iron Deficiency Stress Responses in Cucumber. J Amer Soc Hort Sci 134:589–601

    Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2011) Identification and characterization of the major mitochondrial Fe transporter in rice. Plant Signal Behav 6:1591–1593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bashir K, Nishizawa NK (2006) Deoxymugineic Acid synthase: a gene important for fe-acquisition and homeostasis. Plant Signal Behav 1:290–292

    Article  PubMed Central  PubMed  Google Scholar 

  • Benkova E, Bielach A (2010) Lateral root organogenesis - from cell to organ. Curr Opin Plant Biol 13:677–683

    Article  PubMed  Google Scholar 

  • Berendzen KW, Weiste C, Wanke D, Kilian J, Harter K, Droge-Laser W (2012) Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC Plant Biol 12:125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bertamini M, Nedunchezhian N, Borghi B (2001) Effect of Iron Deficiency Induced Changes on Photosynthetic Pigments, Ribulose- 1,5-Bisphosphate Carboxylase, and Photosystem Activities in Field Grown Grapevine (Vitis Vinifera L. cv. Pinot Noir) Leaves. Photosynthetica 39:59–65

    Article  CAS  Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2014) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20:33–40

    Article  PubMed  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferricchelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Enomoto Y, Goto F (2008) Long-distance signaling of iron deficiency in plants. Plant Signal Behav 3:396–397

    Article  PubMed Central  PubMed  Google Scholar 

  • Garcia MJ, Suarez V, Romera FJ, Alcantara E, Perez-Vicente R (2011) A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiol Biochem 49:537–544

    Article  CAS  PubMed  Google Scholar 

  • Giehl RF, Lima JE, von Wiren N (2012a) Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell 24:33–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giehl RF, Lima JE, von Wiren N (2012b) Regulatory components involved in altering lateral root development in response to localized iron: evidence for natural genetic variation. Plant Signal Behav 7:711–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graziano M, Lamattina L (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J 52:949–960

    Article  CAS  PubMed  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  CAS  PubMed  Google Scholar 

  • Gruber BD, Giehl RF, Friedel S, von Wiren N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Ulmasov T, Hagen G (1998) The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 54:619–627

    Article  CAS  PubMed  Google Scholar 

  • Hindt MN, Guerinot ML (2012) Getting a sense for signals: Regulation of the plant iron deficiency response. Biochim Biophys Acta 1823:1521–1530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hiscock MR, Lance VP, Apprill AM, Bidigare RR, Johnson ZI, Mitchell BG, Smith WOJr, Barber RT (2008) Photosynthetic maximum quantum yield increases are an essential component of the Southern Ocean phytoplankton response to iron. Proc Natl Acad Sci USA 105:4775–4780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoyerova K, Perry L, Hand P, Lanková M, Kocábek T, May S, Kottová J, Paces J, Napier R, Zazimalová E (2008) Functional characterization of PaLAX1, a putative auxin permease, in heterologous plant systems. Plant Physiol 146:1128–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ (2009) Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under ironlimited conditions in tomato. Plant Physiol 150:272–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin CW, Du ST, Shamsi IH, Luo BF, Lin XY (2011) NO synthasegenerated NO acts downstream of auxin in regulating Fedeficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. J Exp Bot 62:3875–3884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin CW, He XX, Zheng SJ (2007) The Iron-Deficiency Induced Phenolics Accumulation May Involve in Regulation of Fe(III) Chelate Reductase in Red Clover. Plant Signal Behav 2:327–332

    Article  PubMed Central  PubMed  Google Scholar 

  • Jin CW, Liu Y, Mao QQ, Wang Q, Du ST (2013) Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.). Food Chem 138:2188–2194

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2014) Iron sensors and signals in response to iron deficiency. Plant Sci 224:36–43

    Article  CAS  PubMed  Google Scholar 

  • Kong WW, Yang ZM (2010) Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48:153–159

    Article  CAS  PubMed  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416

    Article  CAS  PubMed  Google Scholar 

  • Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY, Zheng SJ (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ 37:852–863

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang L, Yang ZM (2014) Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency. Gene 554:16–24

    Article  PubMed  Google Scholar 

  • Li W, Schmidt W (2010) A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. Plant J 62:330–343

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Millan AF, Grusak MA, Abadia A, Abadia J (2013) Iron deficiency in plants: an insight from proteomic approaches. Front Plant Sci 4:254

    Article  PubMed Central  PubMed  Google Scholar 

  • Msilini N, Essemine J, Zaghdoudi M, Harnois J, Lachaâl M, Ouerghi Z, Carpentier R (2013) How does iron deficiency disrupt the electron flow in photosystem I of lettuce leaves? J Plant Physiol 170:1400–1406

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Wang S, Shen C, Zhang S, Chen Y, Xu Y, Liu Y, Wu Y, Jiang D (2012) OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytol 193:109–120

    Article  CAS  PubMed  Google Scholar 

  • Romera FJ, García MJ, Alcántara E, Pérez-Vicente R (2011) Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by Strategy I plants. Plant Signal Behav 6:167–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sablowski RW, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M (1994) A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 13:128–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S (2013) Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J 73:676–688

    Article  CAS  PubMed  Google Scholar 

  • Sarvari E, Gaspar L, Solti A, Meszaros I, Zaray G, Fodor F (2010) Cd-Fe interactions: comparison of the effects of iron deficiency and cadmium on growth and photosynthetic performance in poplar. Acta Biol Hung 61 Suppl:136–148

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H, Sugimoto K, Antonio BA, Nagamura Y (2013) RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41:D1206–1213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt W, Buckhout TJ (2011) A hitchhiker's guide to the Arabidopsis ferrome. Plant Physiol Biochem 49:462–470

    Article  CAS  PubMed  Google Scholar 

  • Schuler M, Keller A, Backes C, Philippar K, Lenhof HP, Bauer P (2011) Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana. BMC Plant Biol 11:87

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma S (2007) Adaptation of photosynthesis under iron deficiency in maize. J Plant Physiol 164:1261–1267

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    Article  CAS  PubMed  Google Scholar 

  • Vigani G, Tarantino D, Murgia I (2013) Mitochondrial ferritin is a functional iron-storage protein in cucumber (Cucumis sativus) roots. Front Plant Sci 4:316

    PubMed Central  PubMed  Google Scholar 

  • Wang B, Li Y, Zhang WH (2012) Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. Ann Bot 110:681–688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu T, Zhang HT, Wang Y, Jia WS, Xu XF, Zhang XZ, Han ZH (2012) Induction of root Fe(III) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. J Exp Bot 63:859–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, Jiang de A (2014) OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J 79:106–117

    Article  CAS  PubMed  Google Scholar 

  • Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z, Cesco S (2012) Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics 13:101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng L, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol 151:262–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaidong Liu or Chenjia Shen.

Additional information

These authors contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Yue, R., Yuan, C. et al. Auxin signaling is involved in iron deficiency-induced photosynthetic inhibition and shoot growth defect in rice (Oryza sativa L.). J. Plant Biol. 58, 391–401 (2015). https://doi.org/10.1007/s12374-015-0379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-015-0379-z

Keywords

Navigation