Skip to main content
Log in

A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The conventional Arrhenius-type model was adopted to identify the deformation characteristic of Ti6Al4V (TC4) titanium alloy based on the stress–strain curves of isothermal compression test. A new flow stress model based on Arrhenius equation was proposed for TC4, which is composed of peak flow stress (PFS) prediction and strain compensation. The predicted PFS is set as a reference to derive the flow stress model at any strain ranging from approximately 0 to 0.7. The predictability and efficiency among the proposed model, conventional model, and an existing physical-based model of TC4 were comparatively evaluated. It is found that the newly proposed model can simultaneously track the hardening and softening behaviors of TC4 through a single expression while the other existing models are only valid in the softening region. Besides, the wider application range and acceptable accuracy of the new model have been achieved by fewer material constants with much-simplified modeling procedure than the other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haghdadi N, Martin D, Hodgson P. Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel. Mater Des. 2016;106:420.

    Article  CAS  Google Scholar 

  2. Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32(4):1733.

    Article  CAS  Google Scholar 

  3. Li MQ, Xiong AM, Wang HR, Su SB, Shen LC. Deformation behaviour and new constitutive equation utilising the grain size of commercial TC6 titanium alloy. Mater Sci Technol. 2004;20(10):1261.

    Article  CAS  Google Scholar 

  4. Luo J, Ye P, Li MQ, Liu LY. Effect of the alpha grain size on the deformation behavior during isothermal compression of Ti–6Al–4V alloy. Mater Des. 2015;88:32.

    Article  CAS  Google Scholar 

  5. Lurdos O, Montheillet F, Damamme G. Empirical and physically based flow rules relevant to high speed processing of 304L steel. Int J Mater Form. 2008;1(1):1431.

    Article  Google Scholar 

  6. Luo J, Li M, Li X, Shi Y. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater. 2010;42(2):157.

    Article  Google Scholar 

  7. Velay V, Matsumoto H, Vidal V, Chiba A. Behavior modeling and microstructural evolutions of Ti-6Al-4V alloy under hot forming conditions. Int J Mech Sci. 2016;108:1.

    Article  Google Scholar 

  8. Rusinek A, Rodríguez-Martínez JA, Arias A. A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper. Int J Mech Sci. 2010;52(2):120.

    Article  Google Scholar 

  9. Tao ZJ, Yang H, Li H, Ma J, Gao PF. Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models. Rare Met. 2016;35(2):162.

    Article  CAS  Google Scholar 

  10. Haghdadi N, Zarei-Hanzaki A, Khalesian AR, Abedi HR. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater Des. 2013;49:386.

    Article  CAS  Google Scholar 

  11. Sellars CM, Mctegart WJ. On the mechanism of hot deformation. Acta Metall. 1966;14(9):1136.

    Article  CAS  Google Scholar 

  12. Haghdadi N, Zarei-Hanzaki A, Abedi HR. The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain. Mater Sci Eng A. 2012;535:252.

    Article  CAS  Google Scholar 

  13. Lin YC, Chen MS, Zhang J. Modeling of flow stress of 42CrMo steel under hot compression. Mater Sci Eng A. 2009;499(1–2):88.

    Article  Google Scholar 

  14. Sun CY, Liu JR, Li R, Zhang QD, Dong JX. Rare Metals Constitutive relationship of IN690 superalloy by using uniaxial compression tests. Rare Met. 2011;30(1):81.

    Article  CAS  Google Scholar 

  15. Cai J, Li F, Liu T, Chen B, He M. Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain. Mater Des. 2011;32(3):1144.

    Article  CAS  Google Scholar 

  16. Samantaray D, Mandal S, Bhaduri AK. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel. Comput Mater Sci. 2009;47(2):568.

    Article  CAS  Google Scholar 

  17. He A, Wang X, Xie G, Zhang H. A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Mater Des. 2013;52(24):677.

    Article  CAS  Google Scholar 

  18. Liu J, Zeng W, Zhu Y, Yu H, Zhao Y. Hot deformation behavior and flow stress prediction of TC4-DT alloy in single-phase region and dual-phase regions. J Mater Eng Perform. 2015;24(5):2140.

    Article  CAS  Google Scholar 

  19. Mcqueen HJ, Ryan ND. Constitutive analysis in hot working. Mater Sci Eng A. 2002;322(1–2):43.

    Article  Google Scholar 

  20. Zhang C, Ding J, Dong Y, Zhao G, Gao A, Wang L. Identification of friction coefficients and strain-compensated Arrhenius-type constitutive model by a two-stage inverse analysis technique. Int J Mech Sci. 2015;98:195.

    Article  Google Scholar 

  21. Peng X, Guo H, Shi Z, Qin C, Zhao Z. Constitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperature. Mater Des. 2013;50(17):198.

    Article  CAS  Google Scholar 

  22. Jia BH, Song WD, Tang HP, Wang ZH, Mao XN, Ning JG. Hot deformation behavior and constitutive model of TC18 alloy during compression. Rare Met. 2014;33(4):383.

    Article  CAS  Google Scholar 

  23. Lin YC, Liu G. A new mathematical model for predicting flow stress of typical high-strength alloy steel at elevated high temperature. Comput Mater Sci. 2010;48(1):54.

    Article  CAS  Google Scholar 

  24. Liu J, Cui Z, Li C. Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B. Comput Mater Sci. 2008;41(3):375.

    Article  CAS  Google Scholar 

  25. He X, Yu Z, Lai X. A method to predict flow stress considering dynamic recrystallization during hot deformation. Comput Mater Sci. 2008;44(2):760.

    Article  CAS  Google Scholar 

  26. Luo J, Wu B, Li M. 3D finite element simulation of microstructure evolution in blade forging of Ti–6Al–4V alloy based on the internal state variable models. Int J Min Met Mater. 2012;19(2):122.

    Article  CAS  Google Scholar 

  27. Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J Appl Phys. 1944;15(1):22.

    Article  Google Scholar 

  28. Luo J, Li M, Li H, Yu W. Effect of the strain on the deformation behavior of isothermally compressed Ti–6Al–4V alloy. Mater Sci Eng A. 2009;505(1–2):88.

    Article  Google Scholar 

  29. Jia W, Zeng W, Zhou Y, Liu J, Wang Q. High-temperature deformation behavior of Ti60 titanium alloy. Mater Sci Eng A. 2011;528(12):4068.

    Article  Google Scholar 

  30. Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon J-P. Hot working behavior of near-α alloy IMI834. Mater Sci Eng A. 2005;396(1–2):50.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51475295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, FH., Xiong, W., Li, XF. et al. A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy. Rare Met. 37, 1035–1045 (2018). https://doi.org/10.1007/s12598-017-0979-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0979-5

Keywords

Navigation