Skip to main content
Log in

Adaptive access mechanism with delta estimation algorithm of traffic loads for supporting weighted priority in IEEE 802.11e WLANs

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Focusing on weighted throughput fairness that nodes get throughput proportions according to priority levels in IEEE 802.11e WLANs, we propose an adaptive and full-distributed access mechanism with delta estimation algorithm of traffic loads. We deduce a linear adjustment rule of Contention Window (CW) about traffic loads, which connects parameters of access mechanism with dynamic network conditions. To support weighted priority levels (WPLs) of throughput proportions, we introduce a priority index to restrict number of successful data transmission of nodes with different priority levels for accurate calculation of channel status information. And then, we give a delta estimation algorithm of traffic loads, which can reduce fluctuations of estimated results around true values. By setting different thresholds corresponding to the WPLs, each node can obtain suitable sizes of CW for better aggregated throughput even as the variations of traffic loads in networks. The selected sizes of CW determine the attempt probability of channel access, which guarantees the weighted fairness of throughput proportions corresponding to WPLs. The simulation results confirm the validity and good scalability of the proposed access mechanism with different ratios of node number between multiple priority levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Khadrah A, Zakaria Z, Othman M, Zin MSIM (2015). Using markov chain model to evaluate the performance of edca protocol under saturation and non-saturation conditions. 10(3):315. doi:10.15866/irecos.v10i3.5700

  • Adam H, Yanmaz E, Bettstetter C (2013) Contention-based estimation of neighbor cardinality. IEEE Trans Mob Comput 12(3):542–555. doi:10.1109/TMC.2012.19

    Article  Google Scholar 

  • Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Select Areas Commun 18:535–547. doi:10.1109/49.840210

    Article  Google Scholar 

  • Bouchemal N, Naja R, Moubarak M, Tohme S (2015). EDCA virtual collision performance evaluation and mobility modeling in V2I communications. Iscc-the Twentieth IEEE Symposium on Computers & Communications, IEEE. pp 463–470. doi:10.1109/ISCC.2015.7405558

  • Chakraborty S, Swain P, Nandi S (2013) Proportional fairness in mac layer channel access of ieee 802.11 s edca based wireless mesh networks. Ad Hoc Netw 11(1):570–584. doi:10.1016/j.adhoc.2012.08.003

    Article  Google Scholar 

  • Chang Z, Zhang X, Guo X et al (2015) Fairness aware rate adaptation and proportional scheduling for IEEE 802.11 WLANs Using FSE. China Commun 12(4):69–75. doi:10.1109/CC.2015.7114071

    Article  Google Scholar 

  • Chen X, Akinyemi I, Yang SH (2015) A control theoretic approach to achieve proportional fairness in 802.11e edca wlans. Comput Commun 75:39–49. doi:10.1016/j.comcom.2015.11.002

    Article  Google Scholar 

  • Chen YB, Lin GY, Wei HY (2016). A dynamic estimation of the unsaturated buffer in the ieee 802.11 dcf network: a particle filter framework approach. IEEE Trans Veh Technol, 1–1. doi:10.1109/TVT.2015.2456975

  • Choi J, Yoo J, Kim CK (2008) A distributed fair scheduling scheme with a new analysis model in ieee 802.11 wireless lans. IEEE Trans Veh Technol 57(5):3083–3093. doi:10.1109/TVT.2008.915518

    Article  Google Scholar 

  • Deng DJ, Ke CH, Chen HH, Huang YM (2008) Contention window optimization for ieee 802.11 dcf access control. IEEE Trans Wireless Commun 7(12):5129–5135. doi:10.1109/T-WC.2008.071259

    Article  Google Scholar 

  • Deng DJ, Lien SY, Lee J, Chen KC (2016) On quality-of-service provisioning in ieee 802.11ax wlans. IEEE Access 4:6086–6104. doi: 10.1109/ACCESS.2016.2602281

    Article  Google Scholar 

  • He Y, Ma X, Ma X, Vasilakos AV, Yuan R, Gong W (2013) Semi-random backoff: towards resource reservation for channel access in wireless lans. IEEE/ACM Trans Netw 21(1):204–217. doi: 10.1109/TNET.2012.2202323

    Article  Google Scholar 

  • Heusse M, Rousseau F, Guillier R, Duda A (2005) Idle sense: an optimal access method for high throughput and fairness in rate diverse wireless LANs. Conference on applications, technologies, architectures, and protocols for computer communications. ACM 35:121–132. doi: 10.1145/1080091.1080107

    Google Scholar 

  • IEEE (2007) Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications. IEEE standard. pp C1-1184. doi: 10.1109/IEEESTD.2010.5514475

  • Javed Y, Baig A, Maqbool M (2015) Enhanced quality of service support for triple play services in IEEE 802.11 WLANs. Eurasip J Wireless Commun Netw (1):9. doi: 10.1186/s13638-014-0233-x

  • Kadota I, Baiocchi A, Anzaloni A (2014) Kalman filtering: estimate of the numbers of active queues in an 802.11e EDCA WLAN. Elsevier Science Publishers B V. doi: 10.1016/j.comcom.2013.09.010

  • Kim Y, Hwang G (2017). Delay analysis and optimality of the renewal access protocol. Ann Oper Res 1–22. doi: 10.1007/s10479-015-2065-4

  • Krishnan S, Chaporkar P (2017). Stochastic approximation based on-line algorithm for fairness in multi-rate wireless LANs. Springer, New York. doi: 10.1007/s11276-016-1243-x

    Book  Google Scholar 

  • Lei L, Zhang T, Song X, Cai S, Chen X, Zhou J (2015) Achieving weighted fairness in wlan mesh networks. Ad Hoc Netw 25(PA):117–129. doi: 10.1016/j.adhoc.2014.10.003

    Article  Google Scholar 

  • Nassiri M, Heusse M, Duda A (2008). A novel access method for supporting absolute and proportional priorities in 802.11 WLANs. INFOCOM 2008. The, Conference on Computer Communications. IEEE. pp 709–717. doi: 10.1109/INFOCOM.2008.121

  • Omar HA, Abboud K, Cheng N, Malekshan KR, Gamage AT, Zhuang W (2016) A survey on high efficiency wireless local area networks: next generation wifi. IEEE Commun Surv Tutorials 18(4):2315–2344. doi: 10.1109/COMST.2016.2554098

    Article  Google Scholar 

  • Patel P, Lobiyal DK (2017) An adaptive contention slot selection mechanism for improving the performance of IEEE 802.11 DCF. Int J Inf Commun Technol 10(3):318. doi:10.1504/IJICT.2017.083272

    Google Scholar 

  • Romdhani L, Ni Q, Turletti T (2003) Adaptive EDCF: enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks. Wireless Communications Networking 2(2):1373–1378. doi: 10.1109/WCNC.2003.1200574 vol). IEEE.

    Google Scholar 

  • Shi C, Dai X, Liang P, Han Z (2012) Adaptive access mechanism with optimal contention window based on node number estimation using multiple thresholds. IEEE Trans Wireless Commun 11(6):2046–2055. doi: 10.1109/TWC.2012.040412.110080

    Article  Google Scholar 

  • Sun X, Gao Y (2016). Distributed throughput optimization for heterogeneous IEEE 802.11 dcf networks. Wireless Netw, 1–11. doi: 10.1007/s11276-016-1392-y

  • Syed I, Roh BH (2016). Adaptive backoff algorithm for contention window for dense ieee 802.11 wlans. Mobile Information Systems, 2016, (2016-6-29), 2016, 1–11. doi: 10.1155/2016/8967281

  • Tinnirello I, Wentink M, Garlisi D, Giuliano F, Bianchi G (2016). MAC design on real 802.11 devices: from exponential to moderated backoff. World of wireless, mobile and multimedia networks. IEEE. 1–6. doi: 10.1109/WoWMoM.2016.7523503

  • Vercauteren T, Toledo A, Wang X (2007) Batch and sequential bayesian estimators of the number of active terminals in an IEEE 802.11 network. IEEE Press. doi: 10.1109/TSP.2006.885723

    MATH  Google Scholar 

  • Xiao Y (2005) Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless lans. IEEE Trans Wireless Commun 4(4):1506–1515. doi: 10.1109/TWC.2005.850328

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61362016, 61502127, 61562022 and 61562023) and National special project of international cooperation in science and technology (2014DFA13140) and NSF of Hainan (617121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Qian He.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., He, SQ., Deng, ZJ. et al. Adaptive access mechanism with delta estimation algorithm of traffic loads for supporting weighted priority in IEEE 802.11e WLANs. J Ambient Intell Human Comput 10, 1693–1702 (2019). https://doi.org/10.1007/s12652-017-0588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-017-0588-z

Keywords

Navigation