Skip to main content
Log in

A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this study, a Legendre spectral tau method is revisited to handle the multi-term time-fractional diffusion equations (MTT-FDEs). An error estimate and rigorous convergence analysis are carried out using some critical theorems. The applicability and accuracy of the solution method are demonstrated by a numerical example to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abd-Elhameed WM, Youssri YH (2017) Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations. Comput Appl Math. https://doi.org/10.1007/s40314-017-0488-z

  • Abdelkawy MA, Amin AZ, Bhrawy AH, Machado JAT, Lopes AM (2017) Jacobi collocation approximation for solving multi-dimensional volterra integral equations. Int J Nonlinear Sci Numer Simul. https://doi.org/10.1515/ijnsns-2016-0160

  • Atangana A (2015) On the stability and convergence of the time-fractional variable order telegraph equation. J Comput Phys 293:104–114

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations. J Comput Phys 281:876–895

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2015) Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80:101–116

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2016) Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl Math Model 40:832–845

    Article  MathSciNet  Google Scholar 

  • Bhrawy AH, Zaky MA (2017) Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput Math Appl 73:1100–1117

    Article  MathSciNet  Google Scholar 

  • Bhrawy AH, Zaky MA (2017) Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations. Nonlinear Dyn 89:1415–1432

    Article  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2017) An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl Numer Math 111:197–218

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA, Machado JAT (2016) Efficient Legendre spectral tau algorithm for solving two-sided space–time Caputo fractional advection–dispersion equation. J Vib Control 22(8):2053–2068

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA, Van Gorder RA (2016) A space–time Legendre spectral tau method for the two-sided space–time Caputo fractional diffusion-wave equation. Numer Algorithms 71:151–180

    Article  MathSciNet  MATH  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, New York

    MATH  Google Scholar 

  • Coimbra CFM (2003) Mechanics with variable-order differential operators. Ann Phys 12:692–703

    Article  MathSciNet  MATH  Google Scholar 

  • Dabiri A, Butcher EA (2017) Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun Nonlinear Sci Numer Simul 50:284–310

    Article  MathSciNet  Google Scholar 

  • Dabiri A, Butcher EA (2017) Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations. Nonlinear Dyn 90:185–201

    Article  MathSciNet  MATH  Google Scholar 

  • Dabiri A, Butcher EA, Nazari M (2017) Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation. J Sound Vib 388:230–244

    Article  Google Scholar 

  • Dabiri A, Butcher EA (2016) The spectral parameter estimation method for parameter identification of linear fractional order systems. American control conference (ACC)

  • Dehghan M, Safarpoor M, Abbaszadeh M (2015) Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J Comput Appl Math 290:174–195

    Article  MathSciNet  MATH  Google Scholar 

  • Ertik H, Demirhan D, Şirin H, Büyükklç F (2010) Time fractional development of quantum systems. J Math Phys 51:082102

    Article  MathSciNet  MATH  Google Scholar 

  • Ezz-Eldien SS (2016) New quadrature approach based on operational matrix for solving a class of fractional variational problems. J Comput Phys 317:362–381

    Article  MathSciNet  MATH  Google Scholar 

  • Ezz-Eldien SS, Hafez RM, Bhrawy AH, Baleanu D, El-Kalaawy A (2017) New numerical approach for fractional variational problems using shifted Legendre orthonormal polynomials. J Optim Theory Appl 174:295–320

    Article  MathSciNet  MATH  Google Scholar 

  • Ganti V, Meerschaert M, Foufoula-Georgiou E, Viparelli E, Parker G (2010) Normal and anomalous diffusion of gravel tracer particles in rivers. J Geophys Res Earth Surf 115(F2):1–12

    Article  Google Scholar 

  • Glöckle WG, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein dynamics. Biophys J 68:46–53

    Article  Google Scholar 

  • Jiang H, Liu F, Turner I, Burrage K (2012) Analytical solutions for the multi-term time-space Caputo–Riesz fractional advection–diffusion equations on a finite domain. J Math Anal Appl 389:1117–1127

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang H, Liu F, Meerschaert MM, McGough RJ (2013) The foundamental solutions for multi-term modified power law wave equations in a finite domain. Electr J Math Anal Appl 1:1

    Google Scholar 

  • Jin B, Lazarov R, Liu Y, Zhou Z (2015) The Galerkin finite element method for a multi-term time-fractional diffusion equation. J Comput Phys 281:825–843

    Article  MathSciNet  MATH  Google Scholar 

  • Li G, Sun C, Jia X, Du D (2016) Numerical solution to the multi-term time fractional diffusion equation in a finite domain. Numer Math Theory Methods Appl 9:337–357

    Article  MathSciNet  MATH  Google Scholar 

  • Li M, Huang C, Jiang F (2017) Galerkin finite element method for higher dimensional multi-term fractional diffusion equation on non-uniform meshes. Appl Anal 96:1269–1284

    Article  MathSciNet  MATH  Google Scholar 

  • Liu F, Meerschaert M, McGough R, Zhuang P, Liu Q (2013) Numerical methods for solving the multi-term time-fractional wave-diffusion equations. Fract Calculus Appl Anal 16:9–25

    MathSciNet  MATH  Google Scholar 

  • Lorenzo CF, Hartley TT (2002) Variable order and distributed order fractional operators. Nonlinear Dyn 29:57–98

    Article  MathSciNet  MATH  Google Scholar 

  • Luchko Y (2009) Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract Calc Appl Anal 12:409–422

    MathSciNet  MATH  Google Scholar 

  • Luchko Y (2011) Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J Math Anal Appl 374:538–548

    Article  MathSciNet  MATH  Google Scholar 

  • Machado JAT, Kiryakova V (2017) The chronicles of fractional calculus. Fract Calc Appl Anal 20:307–336

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi F, Pagnini G, Gorenflo R (2007) Some aspects of fractional diffusion equations of single and distributed order. Appl Math Comput 187:295–305

    MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  • Moghaddam BP, Machado JAT (2017) Extended algorithms for approximating variable order fractional derivatives with applications. J Sci Comput 71:1351–1374

    Article  MathSciNet  MATH  Google Scholar 

  • Moghaddam BP, Machado JAT (2017) A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fract Calc Appl Anal 20:1023–1042

    MathSciNet  MATH  Google Scholar 

  • Moghaddam BP, Machado JAT (2017) A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput Math Appl 73:1262–1269

    Article  MathSciNet  Google Scholar 

  • Moghaddam BP, Machado JAT, Behforooz H (2017) An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Soliton Fract 102:354–360

    Article  MathSciNet  MATH  Google Scholar 

  • Mokhtary P (2017) Numerical analysis of an operational Jacobi Tau method for fractional weakly singular integro-differential equations. Appl Numer Math 121:52–67

    Article  MathSciNet  MATH  Google Scholar 

  • Nicolau DV, Hancock JF, Burrage K (2007) Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys J 92:1975–1987

    Article  Google Scholar 

  • Nigmatulin R (1986) The realization of the generalized transfer equation in a medium with fractal geometry. Phys Stat Sol B 133:425–430

    Article  Google Scholar 

  • Pimenov VG, Hendy AS, De Staelen RH (2017) On a class of non-linear delay distributed order fractional diffusion equations. J Comput Appl Math 318:433–443

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Qiao L, Xu D (2017) Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation. Int J Comput Math. https://doi.org/10.1080/00207160.2017.1324150

  • Ren J, Sun Z (2014) Efficient and stable numerical methods for multi-term time-fractional sub-diffusion equations. East Asian J Appl Math 4:242–266

    Article  MathSciNet  MATH  Google Scholar 

  • Salehi R (2017) A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation. Numer Algorithms 74:1145–1168

    Article  MathSciNet  MATH  Google Scholar 

  • Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12:2455

    Article  Google Scholar 

  • Schneider W, Wyss W (1989) Fractional diusion and wave equations. J Math Phys 30:134–144

    Article  MathSciNet  MATH  Google Scholar 

  • Schumer R, Benson DA, Meerschaert MM, Baeumer B (2003) Fractal mobile/immobile solute transport. Water Res Res 39:1296

    Google Scholar 

  • Smit W, De Vries H (1970) Rheological models containing fractional derivatives. Rheol Acta 9:525–534

    Article  Google Scholar 

  • Song F, Zeng F, Cai W, Chen W, Karniadakis GE (2017) Efficient two-dimensional simulations of the fractional Szabo equation with different time-stepping schemes. Comput Math Appl 73(6):1286–1297

    Article  MathSciNet  Google Scholar 

  • Tang X, Xu H (2016) Fractional pseudospectral integration matrices for solving fractional differential, integral, and integro-differential equations. Commun Nonlinear Sci Numer Simul 30:248–267

    Article  MathSciNet  Google Scholar 

  • Tang X, Shi Y, Xu H (2017) Fractional pseudospectral schemes with equivalence for fractional differential equations. SIAM J Sci Comput 39(3):A966–A982

    Article  MathSciNet  MATH  Google Scholar 

  • Tayebi A, Shekari Y, Heydari MH (2017) A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation. J Comput Phys 340:655–669

    Article  MathSciNet  MATH  Google Scholar 

  • Vyawahare VA, Nataraj PSV (2013) Fractional-order modeling of neutron transport in a nuclear reactor. Appl Math Model 37:9747–9767

    Article  MathSciNet  Google Scholar 

  • Wang L-L, Samson MD, Zhao X (2014) A well-conditioned collocation method using a pseudospectral integration matrix. SIAM J Sci Comput 36:A907–A929

    Article  MathSciNet  MATH  Google Scholar 

  • Wei L (2017) Stability and convergence of a fully discrete local discontinuous Galerkin method for multi-term time fractional diffusion equations. Numer Algorithms. https://doi.org/10.1007/s11075-017-0277-1

  • Yaghoobi S, Moghaddam BP, Ivaz K (2017) An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn 87:815–826

    Article  MathSciNet  MATH  Google Scholar 

  • Zaky MA, Machado JAT (2017) On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul 52:177–189

    Article  MathSciNet  Google Scholar 

  • Zhaoa Y, Zhang Y, Liub F, Turner I, Tang Y, Anh V (2017) Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Comput Math Appl 73:1087–1099

    Article  MathSciNet  Google Scholar 

  • Zheng M, Liu F, Anh V, Turner I (2016) A high-order spectral method for the multi-term time-fractional diffusion equations. Appl Math Model 40:4970–4985

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Zaky.

Additional information

Communicated by José Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaky, M.A. A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations. Comp. Appl. Math. 37, 3525–3538 (2018). https://doi.org/10.1007/s40314-017-0530-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0530-1

Keywords

Mathematics Subject Classification

Navigation