Skip to main content
Log in

A novel optimal fuzzy integrated control method of active suspension system

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A novel optimal fuzzy integrated control method is proposed and used to a half-car model with active suspension system. The cultural algorithm improved by the use of a dynamic acceptance function associated with niche algorithm is presented to optimize the fuzzy control rules with 4 input variables and 2 output variables. The vertical and rolling vibration accelerations of the bodywork are selected as an integrated control objective by using a fitness function. The simulation results of control system demonstrate that there are evident reductions in both vertical vibration acceleration and rolling angle acceleration if fuzzy control rules are optimized by the modified cultural algorithm and then applied to the active suspension system. It is simultaneously shown that the vertical displacement and rolling angle displacement also experience reduction processes. All of the numerical analyses give enormous supports to use of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hussain K, Stein W, Day AJ (2005) Modelling commercial vehicle handing and rolling stability. Proc Inst Mech Eng Part K 12(4):357–369

    Article  Google Scholar 

  2. Shuuichi B, Hidenori K (2009) Analysis and consideration of the driver motion according to rolling slalom running. Rev Automot Eng 30:69–76

    Google Scholar 

  3. Ori TR, Gbaha P, Balou JT, Asseu O (2011) Simulation of a vehicle’s operation controlled by active suspensions. Asian J Sci Res 4(2):139–148

    Article  Google Scholar 

  4. Gysen BLJ, Vandersande TPJ, Johannes PJH, Lomonova EA (2011) Efficiency of a regenerative direct-drive electromagnetic active suspension. IEEE Trans Veh Technol 60(4):586–598

    Article  Google Scholar 

  5. Lin J, Lian R (2011) Intelligent control of active suspension systems. IEEE Trans Ind Electron 58(2):618–629

    Article  MathSciNet  Google Scholar 

  6. Rana KPS (2011) Fuzzy control of an electro-dynamic shaker for automotive and aerospace vibration testing. Expert Syst Appl 38:11335–11346

    Article  Google Scholar 

  7. Saifia D, Chadli M, Labiod S (2011) H control of multiple model subject to actuator saturation: application to quarter-car suspension system. Analog Integr Circ Signal Process 69:81–90

    Article  Google Scholar 

  8. Tzuu-Hseng S, Huang C, Chen C (2010) Novel fuzzy feedback linearization strategy for control via differential geometry approach. ISA Trans 49:348–357

    Article  Google Scholar 

  9. Aldair AA, Wang W (2010) A field programmable gate array is proposed to build an adaptive neuro-fuzzy inference system for controlling a full vehicle nonlinear active suspension system. J Artif Intell Appl 1(4):542–553

    Google Scholar 

  10. Chiou JS, Liu MT (2009) Using fuzzy logic controller and evolutionary genetic algorithm for automotive active suspension system. Int J Automot Technol 10(6):703–710

    Article  Google Scholar 

  11. Du H, Zhang N (2009) Fuzzy control for nonlinear uncertain electro-hydraulic active suspensions with input constraint. IEEE Trans Fuzzy Syst 17(2):343–355

    Article  Google Scholar 

  12. Lin J, Lian R, Huang C, Sie W (2009) Enhanced fuzzy sliding mode controller for active suspension systems. Mechatronics 19:1178–1190

    Article  Google Scholar 

  13. Yagiz N, Hacioglu Y, Taskin Y (2008) Fuzzy sliding-mode control of active suspensions. IEEE Trans Ind Electron 55(11):3883–3889

    Article  Google Scholar 

  14. Aydogan EK, Karaoglan I, Pardalosc PM (2012) Hybrid genetic algorithm in fuzzy rule-based classification systems for high-dimensional problems. Appl Softw Comput 12:800–806

    Article  Google Scholar 

  15. Karasakal O, Guzelkaya M, Eksin I, Yesil E (2011) An error-based on-line rule weight adjustment method for fuzzy PID controllers. Experts Syst Appl 38:10124–10132

    Article  Google Scholar 

  16. Sarra A, Sadok BY, Anne L (2011) Extracting compact and information lossless sets of fuzzy association rules. Fuzzy Sets Syst 183:1–25

    Article  MathSciNet  MATH  Google Scholar 

  17. Cordón O (2011) A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int J Approx Reason 52:894–913

    Article  Google Scholar 

  18. Wang W, Song Y, Xue Y, Jin H, Hou J, Zhao M (2015) An optimal vibration control strategy for a vehicle’s active suspension based on improved cultural algorithm. Appl Softw Comput 28:167–174

    Article  Google Scholar 

  19. Zhang Y, Teng H, Hou C (2005) The research and design of time domain simulation system for vehicle road stochastic irregularity. Trans CSAE 21(2):86–91

    Google Scholar 

  20. Rcynolds GR (1994) An introduction to cultural algorithm. Proceedings of the 3rd annual conference on evolutionary programming, Japan, 21 August 1994

  21. Guo P, Zhang JH (2017) Numerical model and multi-objective optimization analysis of vehicle vibration. J Zhejiang Univ Sci A 18(5):393–412

    Article  Google Scholar 

  22. Amira H, Mostafa EH (2011) Modified cultural-based genetic algorithm for process optimization. Ain Shams Eng J 2:173–182

    Article  Google Scholar 

  23. Sun DY, Ni SC, Huang TC (2010) Apply a novel evolutionary algorithm to the solution of parameter selection problems. Appl Math Comput 216:335–343

    MathSciNet  MATH  Google Scholar 

  24. Liu G, He L (2005) Genetic algorithm with double roulette wheels. J Beijing Univ Aeronaut Astronaut 31(8):930–933

    Google Scholar 

  25. Zhang Y (2012) Research of web search based on cultural algorithm new framework. Proc Eng 29:3641–3645

    Article  Google Scholar 

  26. Soza C, Becerra RL, Riff MC (2011) Solving timetabling problems using a cultural algorithm. Appl Softw Comput 11(1):337–344

    Article  Google Scholar 

Download references

Acknowledgements

The research investigated by this paper is supported by the National Key Research and Development Program of China (Grant No. 2016YFD0700800) and the Shaanxi Province Key Research and Development Program of China (Grant No. 2017NY-176). Simultaneously it is sponsored by the Project of China Scholarship Council (Grant No. 201308610096). The first author would sincerely like to express gratitude to his enthusiastic supervisor Dr. Julian F. Dunne for his suggestions when the author studied abroad at Sussex University in the UK. The authors declare no conflict of interest in preparing this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Yuling Song.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Appendix

Appendix

E is a unit matrix. O is a zero matrix.

$${\kern 1pt} {\kern 1pt} {\text{A}} = \left[ {\begin{array}{*{20}c} \begin{gathered} {\text{O}}_{{4 \times 4}} \hfill \\ \cdots \cdots \cdots \hfill \\ \end{gathered} & \begin{gathered} \vdots \hfill \\ \vdots \hfill \\ \end{gathered} & \begin{gathered} \;{\text{E}}_{{4 \times 4}} \hfill \\ \cdots \cdots \cdots \hfill \\ \end{gathered} \\ {{\text{A}}_{{{\mathbf{1}}{\kern 1pt} {\kern 1pt} {\text{(}}4 \times 4{\text{)}}}} } & \vdots & {{\text{A}}_{{{\mathbf{2}}{\kern 1pt} {\kern 1pt} {\text{(}}4 \times 4{\text{)}}}} } \\ \end{array} } \right]$$
$${\text{B}} = \left[ {\begin{array}{*{20}c} {{\text{O}}_{{4 \times 4}} \begin{array}{*{20}c} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} } & {\begin{array}{*{20}c} {\frac{{k_{{12}} }}{{m_{1} }}} & 0 & 0 & 0 \\ 0 & {\frac{{k_{{22}} }}{{m_{2} }}} & 0 & 0 \\ {\frac{1}{{m_{1} }}} & 0 & { - \frac{1}{M}} & {\frac{l}{J}} \\ 0 & {\frac{1}{{m_{2} }}} & { - \frac{1}{M}} & { - \frac{l}{J}} \\ \end{array} } \\ \end{array} } \right]^{T}$$
$${\mathbf{A}}_{{\mathbf{1}}} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{ = }}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ {\begin{array}{*{20}c} { - \frac{{k_{{11}} + k_{{12}} }}{{m_{1} }}} & 0 & {\frac{{k_{{12}} }}{{m_{1} }}} & { - \frac{{l \cdot k_{{12}} }}{{m_{1} }}} \\ 0 & { - \frac{{k_{{21}} + k_{{22}} }}{{m_{2} }}} & {\frac{{k_{{22}} }}{{m_{2} }}} & {\frac{{l \cdot k_{{22}} }}{{m_{2} }}} \\ {\frac{{k_{{12}} }}{M}} & {\frac{{k_{{22}} }}{M}} & { - \frac{{k_{{12}} + k_{{22}} }}{M}} & 0 \\ { - \frac{{l \cdot k_{{12}} }}{J}} & {\frac{{l \cdot k_{{22}} }}{J}} & 0 & { - \frac{{l^{2} k_{{12}} + l^{2} k_{{22}} }}{J}} \\ \end{array} } \right]$$
$$A_{2} = \left[ {\begin{array}{*{20}c} { - \frac{{c_{1} }}{{m_{1} }}} & 0 & {\frac{{c_{1} }}{{m_{1} }}} & {\frac{{l \cdot c_{1} }}{{m_{1} }}} \\ 0 & { - \frac{{c_{1} }}{{m_{1} }}} & {\frac{{c_{2} }}{{m_{2} }}} & {\frac{{l \cdot c_{2} }}{{m_{2} }}} \\ {\frac{{c_{1} }}{M}} & {\frac{{c_{2} }}{M}} & { - \frac{{c_{1} + c_{2} }}{M}} & 0 \\ { - \frac{{lc_{1} }}{J}} & { - \frac{{lc_{2} }}{J}} & 0 & { - \frac{{l^{2} c_{1} + l^{2} c_{2} }}{J}} \\ \end{array} } \right]$$
$${\text{C}} = \left[ {\begin{array}{*{20}c} 0 & 0 & {\frac{k12}{M}} & { - \frac{l \cdot k12}{J}} \\ 0 & 0 & {\frac{k22}{M}} & {\frac{l \cdot k22}{J}} \\ 1 & 0 & { - \frac{k12 + k22}{M}} & 0 \\ 0 & 1 & 0 & { - \frac{{l^{2} (k12 + k22)}}{J}} \\ 0 & 0 & { - \frac{c1}{M}} & { - \frac{lc1}{J}} \\ 0 & 0 & {\frac{c2}{M}} & { - \frac{lc2}{J}} \\ 0 & 0 & { - \frac{c1 + c2}{M}} & 0 \\ 0 & 0 & 0 & { - \frac{{l^{2} (c1 + c2)}}{J}} \\ \end{array} } \right]^{T}$$
$$\begin{aligned} {\text{D}} = {\text{O}}4 \times 4 \hfill \\ u = \left[ {z10,\,z20,F1,F2} \right]^{T} \hfill \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Song, Y., Chen, J. et al. A novel optimal fuzzy integrated control method of active suspension system. J Braz. Soc. Mech. Sci. Eng. 40, 29 (2018). https://doi.org/10.1007/s40430-017-0932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-017-0932-4

Keywords

Navigation