Skip to main content
Log in

A modified multi-group model of angular and momentum distribution of cosmic ray muons for thickness measurement and material discrimination of slabs

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However, most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra of cosmic ray muons and reduced the spatial resolution. We present a modified multi-group model that takes into account these effects and calibrates the model by the material of lead. Performance tests establish that the model is capable of measuring the thickness of a Pb slab and identifying the material of an unknown slab on a reasonable exposure timescale, in both cases of complete and incomplete angular data. Results show that the modified multi-group model is helpful for improvements in image resolution in real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.N. Borozdin, G.E. Hogan, C. Morris et al., Surveillance: radiographic imaging with cosmic-ray muons. Nature 422(6929), 277 (2003). https://doi.org/10.1038/422277a

    Article  Google Scholar 

  2. L.J. Schultz, K.N. Borozdin, J.J. Gomez et al., Image reconstruction and material \(Z\) discrimination via cosmic ray muon radiography. Nucl. Instrum. Methods A 519, 687–694 (2004). https://doi.org/10.1016/j.nima.2003.11.035

    Article  Google Scholar 

  3. W.C. Priedhorsky, K.N. Borozdin, G.E. Hogan et al., Detection of high-\(Z\) objects using multiple scattering of cosmic ray muons. Rev. Sci. Instrum. 74, 4294–4297 (2003). https://doi.org/10.1063/1.1606536

    Article  Google Scholar 

  4. R.C. Hoch, Master thesis, Florida Institute of Technology (2009)

  5. J. Perry, Ph.D. thesis, University of New Mexico (2013)

  6. J.O. Perry, J.D. Bacon, K.N. Borozdin et al., Analysis of the multigroup model for muon tomography based threat detection. J. Appl. Phys. 115, 064904 (2014). https://doi.org/10.1063/1.4865169

    Article  Google Scholar 

  7. J. Snuverink, The ATLAS Muon Spectrometer: Commissioning and Tracking (University of Twente, Enschede, 2009)

    Book  Google Scholar 

  8. M. Bandieramonte, V.A. Delogu, U. Becciani et al., Automated object recognition and visualization techniques for muon tomography data analysis, in 2013 IEEE International Conference on Technologies for Homeland Security (HST), Institute of Electrical and Electronics Engineers (IEEE) (2013). https://doi.org/10.1109/THS.2013.6699057

  9. M. Furlan, A. Rigoni, S. Vanini et al., Application of muon tomography to detect radioactive sources hidden in scrap metal containers. IEEE Trans. Nucl. Sci. 61, 2204–2209 (2014). https://doi.org/10.1109/TNS.2014.2321116

    Article  Google Scholar 

  10. R. Patnaik, Y. Lee, D. Dorroh, Image based object identification in muon tomography, in 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (Institute of Electrical and Electronics Engineers (IEEE), 2014). https://doi.org/10.1109/NSSMIC.2014.7431145

  11. G. Blanpied, S. Kumar, D. Dorroh et al., Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials. Nucl. Instrum. Methods A 784, 352–358 (2015). https://doi.org/10.1016/j.nima.2014.11.027

    Article  Google Scholar 

  12. M. Sossong, G. Blanpied, S. Kumar et al., Cosmic ray generated charged particles for cargo inspection, in NATO Science for Peace and Security Series B: Physics and Biophysics, Nuclear Threats and Security Challenges (2015), pp. 229–243. https://doi.org/10.1007/978-94-017-9894-5_21

  13. C.L. Morris, K. Borozdin, J. Bacon et al., Obtaining material identification with cosmic ray radiography. AIP Adv. 2, 042128 (2012). https://doi.org/10.1063/1.4766179

    Article  Google Scholar 

  14. C.T. Case, E.L. Battle, Molière’s theory of multiple scattering. Phys. Rev. 169, 201–204 (1968). https://doi.org/10.1103/PhysRev.169.201

    Article  Google Scholar 

  15. W.T. Scott, The theory of small-angle multiple scattering of fast charged particles. Rev. Mod. Phys. 35, 231–313 (1963). https://doi.org/10.1103/RevModPhys.35.231

    Article  Google Scholar 

  16. C.L. Morris, J. Bacon, K. Borozdin et al., A new method for imaging nuclear threats using cosmic ray muons. AIP Adv. 3, 082128 (2013). https://doi.org/10.1063/1.4820349

    Article  Google Scholar 

  17. C. Bai, S. Simon, J. Kindem et al., Muon tomography imaging improvement using optimized limited angle data, Proceedings of SPIE 9073, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV, 907318 (2014). https://doi.org/10.1117/12.2049977

  18. C. Hagmann, D. Lange, D. Wright, Cosmic-ray shower generator (CRY) for Monte Carlo transport codes, in IEEE Nuclear Science Symposium Conference Record, vol. 2007, no. 2 (2007), pp. 1143–1146. https://doi.org/10.1109/NSSMIC.2007.4437209

  19. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  20. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  Google Scholar 

  21. D. Mitra, A. Banerjee, S. Waweru et al., Simulation study of muon scattering for tomography reconstruction, in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2009). https://doi.org/10.1109/NSSMIC.2009.5402209

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Bing Shuai.

Additional information

This work was supported by the Science and Technology Development Foundation of CAEP (No. 2015B0103014) and the National Natural Science Foundation of China (No. 11605163).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., He, WB., Lan, MC. et al. A modified multi-group model of angular and momentum distribution of cosmic ray muons for thickness measurement and material discrimination of slabs. NUCL SCI TECH 29, 28 (2018). https://doi.org/10.1007/s41365-018-0363-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0363-7

Keywords

Navigation