Skip to main content
Log in

Large eddy simulation of unsteady flow in gas–liquid separator applied in thorium molten salt reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Axial gas–liquid separators have been adopted in fission gas removal systems for the development of thorium molten salt reactors. In our previous study, we observed an unsteady flow phenomenon in which the flow pattern is directly dependent on the backpressure in a gas–liquid separator; however, the underlying flow mechanism is still unknown. In order to move a step further in clarifying how the flow pattern evolves with a variation in backpressure, a large eddy simulation (LES) was adopted to study the flow field evolution. In the simulation, an artificial boundary was applied at the separator outlet under the assumption that the backpressure increases linearly. The numerical results indicate that the unsteady flow feature is captured by the LES approach, and the flow transition is mainly due to the axial velocity profile redistribution induced by the backpressure variation. With the increase in backpressure, the axial velocity near the downstream orifice transits from negative to positive. This change in the axial velocity sign forces the unstable spiral vortex to become a stable rectilinear vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

P out :

Backpressure

Re :

Reynolds number

r*:

Non-dimensional radial coordinates r* = r/R

S :

Swirl number

t :

Time

t*:

Non-dimensional time

T :

Total time of flow evolution

V in :

Average velocity at separator inlet

\( v_{\text{a}}^{*} \) :

Non-dimensional axial velocity \( v_{\text{a}}^{ *}\,{ = }\,{{v_{\text{a}} } \mathord{\left/ {\vphantom {{v_{\text{a}} } {V_{\text{in}} }}} \right. \kern-0pt} {V_{\text{in}} }} \)

\( v_{\text{t}}^{*} \) :

Non-dimensional tangential velocity \( v_{\text{t}}^{ *}\,{ = }\,{{v_{\text{t}} } \mathord{\left/ {\vphantom {{v_{\text{t}} } {V_{\text{in}} }}} \right. \kern-0pt} {V_{\text{in}} }} \)

References

  1. J. Yin, J. Li, Y. Ma et al., Study on the air core formation of a gas–liquid separator. J. Fluid. Eng. T. ASME. 137, 91301 (2015). https://doi.org/10.1115/1.4030198

    Article  Google Scholar 

  2. J. Yin, Y. Ma, Y. Qian et al., Experimental investigation of the bubble separation route for an axial gas–liquid separator for TMSR. Ann. Nucl. Energy 97, 1–6 (2016). https://doi.org/10.1016/j.anucene.2016.06.018

    Article  Google Scholar 

  3. N. Syred, A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. 32, 93–161 (2006). https://doi.org/10.1016/j.pecs.2005.10.002

    Article  Google Scholar 

  4. D. Durox, J.P. Moeck, J. Bourgouin et al., Flame dynamics of a variable swirl number system and instability control. Combust. Flame 160, 1729–1742 (2013). https://doi.org/10.1016/j.combustflame.2013.03.004

    Article  Google Scholar 

  5. G.I. Pisarev, V. Gjerde, B.V. Balakin et al., Experimental and computational study of the “end of the vortex” phenomenon in reverse-flow centrifugal separators. AIChE J. 58, 1371–1380 (2012). https://doi.org/10.1002/aic.12695

    Article  Google Scholar 

  6. J.L. Yin, L. Jiao, L. Wang, Large eddy simulation of unsteady flow in vortex diode. Nucl. Eng. Des. 240, 970–974 (2010). https://doi.org/10.1016/j.nucengdes.2010.01.010

    Article  Google Scholar 

  7. S.I. Shtork, N.F. Vieira, E.C. Fernandes, On the identification of helical instabilities in a reacting swirling flow. Fuel 87, 2314–2321 (2008). https://doi.org/10.1016/j.fuel.2007.10.016

    Article  Google Scholar 

  8. R. Hreiz, C. Gentric, N. Midoux et al., Hydrodynamics and velocity measurements in gas-liquid swirling flows in cylindrical cyclones. Chem. Eng. Res. Des. 92, 2231–2246 (2014). https://doi.org/10.1016/j.cherd.2014.02.029

    Article  Google Scholar 

  9. S.V. Alekseenko, P.A. Kuibin, V.L. Okulov et al., Helical vortices in swirl flow. J. Fluid Mech. 382, 195–243 (1999). https://doi.org/10.1017/S0022112098003772

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Ragab, M. Sreedhar, Numerical simulation of vortices with axial velocity deficits. Phys. Fluids 7, 549–558 (1995). https://doi.org/10.1063/1.868582

    Article  MATH  Google Scholar 

  11. O. Lucca-Negro, T. O’Doherty, Vortex breakdown: a review. Prog. Energy Combust. 27, 431–481 (2001). https://doi.org/10.1016/S0360-1285(00)00022-8

    Article  Google Scholar 

  12. J.L. Yin, J.J. Li, Y.F. Ma et al., Numerical approach on the performance prediction of a gas–liquid separator for TMSR. J. Nucl. Sci. Technol. (2015). https://doi.org/10.1080/00223131.2015.1092399

    Google Scholar 

  13. B.C. Cai, J.J. Wang, L.C. Sun et al., Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR. Prog. Nucl. Energy 74, 1–13 (2014). https://doi.org/10.1016/j.pnucene.2014.02.007

    Article  Google Scholar 

  14. Y. Xu, X. Song, Z. Sun et al., Numerical investigation of the effect of the ratio of the vortex-finder diameter to the spigot diameter on the steady state of the air core in a hydrocyclone. Ind. Eng. Chem. Res. 52, 5470–5478 (2013). https://doi.org/10.1021/ie302081v

    Article  Google Scholar 

  15. M. Narasimha, A.N. Mainza, P.N. Holtham et al., Air-core modelling for hydrocyclones operating with solids. Int. J. Miner. Process. 102, 19–24 (2012). https://doi.org/10.1016/j.minpro.2011.09.004

    Article  Google Scholar 

  16. R. Hreiz, C. Gentric, N. Midoux, Numerical investigation of swirling flow in cylindrical cyclones. Chem. Eng. Res. Des. 89, 2521–2539 (2011). https://doi.org/10.1016/j.cherd.2011.05.001

    Article  Google Scholar 

  17. M. Germano, U. Piomelli, P. Moin et al., A dynamic subgrid-scale eddy viscosity model. Phys. Fluids Fluid Dyn. 3, 1760–1765 (1991). https://doi.org/10.1063/1.857955

    Article  MATH  Google Scholar 

  18. A. Favrel, A. Mueller, C. Landry et al., Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry. Exp. Fluids 56, 1–15 (2015). https://doi.org/10.1007/s00348-015-2085-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Lian Yin.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11535009 and 51406114).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JJ., Qian, YL., Yin, JL. et al. Large eddy simulation of unsteady flow in gas–liquid separator applied in thorium molten salt reactor. NUCL SCI TECH 29, 62 (2018). https://doi.org/10.1007/s41365-018-0411-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0411-3

Keywords

Navigation