Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures

Abstract

The development of an efficient catalytic process that mimics the enzymatic function of alcohol dehydrogenase is critical for using biomass alcohols for both the production of H2 as a chemical energy carrier and fine chemicals under waste-free conditions. Dehydrogenation of alcohol–water mixtures into their corresponding acids with molecular hydrogen as the sole by-product from the reaction can be catalysed by a ruthenium complex with a chelating bis(olefin) diazadiene ligand. This complex, [K(dme)2][Ru(H)(trop2dad)], stores up to two equivalents of hydrogen intramolecularly, and catalyses the production of H2 from alcohols in the presence of water and a base under homogeneous conditions. The conversion of a MeOH–H2O mixture proceeds selectively to CO2/H2 gas formation under neutral conditions, thereby allowing the use of the entire hydrogen content (12% by weight). Isolation and characterization of the ruthenium complexes from these reactions suggested a mechanistic scenario in which the trop2dad ligand behaves as a chemically ‘non-innocent’ co-operative ligand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metal–ligand co-operativity for hydrogen splitting and evolution.
Figure 2: Redox-active or chemically active metal–diazadiene–olefin combination.
Figure 3: Preparation and reactivity of [K(dme)2][Ru(H)(trop2dad)].
Figure 4: X-ray crystal structures (ORTEP) of catalyst 3 and key intermediates 5 and 6.
Figure 5: Stoichiometric reactions with 3 leading to key intermediates 4, 4′, 5, 5-D and 6 in alcohol dehydrogenation reactions.
Figure 6: Proposed simplified mechanism for the catalytic conversion of alcohols to carboxylic acids promoted by [Ru(II)(trop2dad)] and [Ru(0)(tropdae)] complexes.

Similar content being viewed by others

References

  1. Navarro, R. M., Pena, M. A. & Fierro, J. L. G. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem. Rev. 107, 3952–3991 (2007).

    Article  CAS  Google Scholar 

  2. Gärtner, F. et al. Hydrogen evolution from water/alcohol mixtures: effective in situ generation of an active Au/TiO2 catalyst. ChemSusChem. 5, 530–533 (2012).

    Article  Google Scholar 

  3. Okamoto, Y., Ida, S., Hyodo, J., Hagiwara, H. & Ishihara T. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading. J. Am. Chem. Soc. 133, 18034–18037 (2011).

    Article  CAS  Google Scholar 

  4. Morton, D. & Cole-Hamilton, D. J. Rapid thermal hydrogen production from alcohols catalysed by [Rh(2,2′-bipyridyl)2]CI. Chem. Commun. 248–249 (1987).

  5. Shinoda, S., Itagaki, H. & Saito, Y. Dehydrogenation of methanol in the liquid phase with a homogeneous ruthenium complex catalyst. Chem. Commun. 860–861 (1985).

  6. Smith, T. A., Aplin, R. P. & Maitlis, P. M. The ruthenium-catalysed conversion of methanol into methyl formate. J. Organomet. Chem. 291, C13–C14 (1985).

    Article  CAS  Google Scholar 

  7. Fujii, T. & Saito, Y. Catalytic dehydrogenation of methanol with ruthenium complexes. J. Mol. Catal. 67, 185–190 (1991).

    Article  CAS  Google Scholar 

  8. Yamakawa, T., Hiroi, M. & Shinoda, S. Catalytic reaction of methanol with a series of ruthenium(II) complexes and the mechanism of the formation of acetic acid from methanol alone. J. Chem. Soc. Dalton Trans. 2265–2269 (1994).

  9. Makita, K., Nomura, K. & Saito, Y. Photocatalytic dehydrogenation of methanol using [IrH(SnCl3)5]3− complex. J. Mol. Catal. 89, 143–150 (1994).

    Article  CAS  Google Scholar 

  10. Johnson, T. C., Morris, D. J. & Wills M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem. Soc. Rev. 39, 81–88 (2010).

    Article  CAS  Google Scholar 

  11. Blum, Y. & Shvo, Y. Catalytically reactive (η4-tetracyclone)(CO)2(H)2Ru and related complexes in dehydrogenation of alcohols to esters. J. Organomet. Chem. 282, C7–C10 (1985).

    Article  CAS  Google Scholar 

  12. Zhang, J., Leitus, G., Ben-David, Y. & Milstein, D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J. Am. Chem. Soc. 127, 10840–10841 (2005).

    Article  CAS  Google Scholar 

  13. Gunanathan, C., Ben-David, Y. & Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2 . Science 317, 790–792 (2007).

    Article  CAS  Google Scholar 

  14. Nielsen, M. et al. Hydrogen production from alcohols under mild reaction conditions. Angew. Chem. Int. Ed. 50, 9593–9597 (2011).

    Article  CAS  Google Scholar 

  15. Nielsen, M., Junge, H., Kammer, A. & Beller, M. Towards a green process for bulk-scale synthesis of ethyl acetate: efficient acceptorless dehydrogenation of ethanol. Angew. Chem. Int. Ed. 51, 5711–5713 (2012).

    Article  CAS  Google Scholar 

  16. Spasyuk, D. & Gusev, D. G. Acceptorless dehydrogenative coupling of ethanol and hydrogenation of esters and imines. Organometallics 31, 5239–5242 (2012).

    Article  CAS  Google Scholar 

  17. Trincado, M., Grützmacher, H., Vizza, F. & Bianchini, C. Domino rhodium/palladium-catalyzed dehydrogenation reactions of alcohols to acids by hydrogen transfer to inactivated alkenes. Chem. Eur. J. 16, 2751–2757 (2010).

    Article  CAS  Google Scholar 

  18. Trincado, M., Kühlein, K. & Grützmacher, H. Metal–ligand cooperation in the catalytic dehydrogenative coupling (DHC) of polyalcohols to carboxylic acid derivatives. Chem. Eur. J. 17, 11905–11913 (2011).

    Article  CAS  Google Scholar 

  19. Annen S. P. et al. A biologically inspired organometallic fuel cell (OMFC) that converts renewable alcohols into energy and chemicals. Angew. Chem. Int. Ed. 49, 7229–7233 (2010).

    Article  CAS  Google Scholar 

  20. Bevilacqua, C. et al. Improvement in the efficiency of an organometallic fuel cell by tuning the molecular architecture of the anode electrocatalyst and the nature of the carbon support. Energy Environ. Sci. 5, 8608–8620 (2012).

    Article  CAS  Google Scholar 

  21. Wesselbaum, S., vom Stein, T., Klankermayer, J. & Leitner, W. Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium–phosphine catalyst. Angew. Chem. Int. Ed. 51, 7499–7502 (2012).

    Article  CAS  Google Scholar 

  22. Olah, G. A., Goeppert, A. & Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, 2009).

  23. Grasemann, M. & Laurenczy, G. Formic acid as a hydrogen source—recent developments and future trends. Energy Environ. Sci. 5, 8171–8181 (2012).

    Article  CAS  Google Scholar 

  24. Himeda, Y. Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4-dihydroxy-2,2-bipyridine. Green Chem. 11, 2018–2022 (2009).

    Article  CAS  Google Scholar 

  25. Hull, J. F. et al. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature Chem. 4, 383–388 (2012).

    Article  CAS  Google Scholar 

  26. Lyaskovsky, V. & de Bruin, B. Redox non-innocent ligands: versatile new tools to control catalytic reactions. ACS Catal. 2, 270–279 (2012).

  27. Caulton, K. G. Systematics and future projections concerning redox-noninnocent amide/imine ligands. Eur. J. Inorg. Chem. 435–443 (2012).

    Article  Google Scholar 

  28. Chirik, P. J. & Wieghardt, K. Radical ligands confer nobility on base-metal catalysts. Science 327, 794–795 (2012).

    Article  Google Scholar 

  29. Kaim, W. et al. The 1,4-diazabutadiene/1,2-enediamido non-innocent ligand system in the formation of iridaheteroaromatic compounds: spectroelectrochemistry and electronic structure. J. Organomet. Chem. 695, 1052–1058 (2010).

    Article  CAS  Google Scholar 

  30. Puschmann, F. F. et al. Electromeric rhodium radical complexes. Angew. Chem. Int. Ed. 49, 385–389 (2010).

    Article  CAS  Google Scholar 

  31. Bally, T. Isomerism: the same but different. Nature Chem. 2, 165–166 (2010).

    Article  CAS  Google Scholar 

  32. Knijnenburg, Q., Gambarottab, S. & Budzelaar, P. H. M. Ligand-centered reactivity in diiminepyridine complexes. Dalton Trans. 5442–5448 (2006).

  33. Keene, F. R. Metal-ion promotion of the oxidative dehydrogenation of coordinated amines and alcohols. Coord. Chem. Rev. 187, 121–149 (1999).

    Article  CAS  Google Scholar 

  34. Greulich, S., Klein, A., Knoedler, A. & Kaim, W. Qualitatively different reactivities of hydride reagents toward [(α-diimine)(η5-C5Me5)ClIr]+ cations: substitution, electron transfer (reduction), or stepwise hydrogenation. Organometallics 21, 765–769 (2002).

    Article  CAS  Google Scholar 

  35. Mikhailine, A. A., Maishan, M. I., Lough, A. J. & Morris, R. H. The mechanism of efficient asymmetric transfer hydrogenation of acetophenone using an iron(II) complex containing an (S,S)-Ph2PCH2CH=NCHPhCHPhN=CHCH2PPh2 ligand: partial ligand reduction is the key. J. Am. Chem. Soc. 134, 12266–12280 (2012).

    Article  CAS  Google Scholar 

  36. De Bruin, B. & Hetterscheid, D. G. H. Paramagnetic (alkene)Rh and (alkene)Ir complexes: metal or ligand radicals? Eur. J. Inorg. Chem. 211–230 (2007).

  37. Defieber, C., Grützmacher, H. & Carreira, E. Chiral olefins as steering ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 47, 4482–4502 (2008).

    Article  CAS  Google Scholar 

  38. Breher, F. et al. TROPDAD: a new ligand for the synthesis of water-stable paramagnetic [16 + 1]-electron rhodium and iridium complexes. Chem. Eur. J. 9, 3859–3866 (2003).

    Article  CAS  Google Scholar 

  39. Maire, P., Breher, F. & Grützmacher, H. Diamido rhodates(1−). Angew. Chem. Int. Ed. 44, 6325–6329 (2005).

    Article  CAS  Google Scholar 

  40. Askevold, B., Khusniyarov, M., Herdtweck, E., Meyer, K. & Schneider, S. A square-planar ruthenium(II) complex with a low-spin configuration. Angew. Chem. Int. Ed. 49, 7566–7569 (2010).

    Article  CAS  Google Scholar 

  41. Watson, L. A., Ozerov, O. V., Pink, M. & Caulton, K. G. A triplet state as a response to a 14-valence electron configuration. J. Am. Chem. Soc. 125, 8426–8427 (2003).

    Article  CAS  Google Scholar 

  42. Hiraki, K., Nanoka, A., Matsunga, T. & Kawano, H. Reactions of [RuClH(CO)(PPh3)3] with 2-methyl-2-propen-1-ol. Reversible insertion: β-elimination, and reductive elimination on a 3-hydroxy-2-methylpropyl-C1,O-ruthenium(II) complex. J. Organomet. Chem. 574, 121–132 (1999).

    Article  CAS  Google Scholar 

  43. Gottschalk-Gaudig, T., Huffman, J. C., Gerard, H. G., Eisenstein, O. & Caulton, K. G. Unsaturated Ru(0) species with a constrained bis-phosphine ligand: [Ru(CO)2(tBu2PCH2CH2PtBu2)]2. Comparison to [Ru(CO)2(PtBu2Me)2]. Inorg. Chem. 39, 3957–3962 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Schweizer Nationalfonds (SNF), Eidgenössische Hochschule Zürich and the joint SNF/Deutsche Forschungsgemeinschaft research project ‘Unconventional Approaches to the Activation of Dihydrogen’ (FOR1175). H.G. thanks P. Edwards (University of Oxford) and Lotus Cars, in particular, for inspiration.

Author information

Authors and Affiliations

Authors

Contributions

G.S-Q. performed the X-ray diffraction measurements with single crystals. All other authors planned and performed the experiments. R.E.R-L., M.T. and H.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Mónica Trincado or Hansjörg Grützmacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1450 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 28 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 26 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 15 kb)

Supplementary information

Crystallographic data for compound 6 (CIF 28 kb)

Supplementary information

Crystallographic data for compound 7 (CIF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Lugo, R., Trincado, M., Vogt, M. et al. A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nature Chem 5, 342–347 (2013). https://doi.org/10.1038/nchem.1595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing