Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction

An Erratum to this article was published on 23 January 2017

This article has been updated

Abstract

The oxygen evolution reaction (OER) is of prime importance in multiple energy storage devices; however, deeper mechanistic understanding is required to design enhanced electrocatalysts for the reaction. Current understanding of the OER mechanism based on oxygen adsorption on a metallic surface site fails to fully explain the activity of iridium and ruthenium oxide surfaces, and the drastic surface reconstruction observed for the most active OER catalysts. Here we demonstrate, using La2LiIrO6 as a model catalyst, that the exceptionally high activity found for Ir-based catalysts arises from the formation of active surface oxygen atoms that act as electrophilic centres for water to react. Moreover, with the help of transmission electron microscopy, we observe drastic surface reconstruction and iridium migration from the bulk to the surface. Therefore, we establish a correlation between surface activity and surface stability for OER catalysts that is rooted in the formation of surface reactive oxygen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Redox behaviour and pH as an energy ladder for triggering surface oxidation.
Figure 2: Oxygen evolution activity and surface redox active sites.
Figure 3: Formation of IrO2 nanoparticles upon cycling and gradual deformation of the bulk phase.
Figure 4: Electronic structure and anionic redox involved into the oxidation process.
Figure 5: Cationic and anionic migration upon oxidation causing dislocations in oxidized La2LiIrO6.
Figure 6: Oxygen evolution mechanism on the surface of La2LiIrO6 with oxidized surface oxygen as reactive site and bulk oxygen migration.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. Chem. Cat. Chem. 2, 724–761 (2010).

    Google Scholar 

  2. Hong, W. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    Article  Google Scholar 

  3. Matsumoto, Y. & Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 14, 397–426 (1986).

    Article  Google Scholar 

  4. Wattiaux, A. Electrolytic oxygen evolution in alkaline medium on La1−xSrxFeO3−y perovskite-related ferrites. J. Electrochem. Soc. 134, 1718–1724 (1987).

    Article  Google Scholar 

  5. Bockris, J. O. & Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984).

    Article  Google Scholar 

  6. Yagi, S. et al. Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 6, 8249 (2015).

    Article  Google Scholar 

  7. Hardin, W. G. et al. Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. Chem. Mater. 26, 3368–3376 (2014).

    Article  Google Scholar 

  8. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  Google Scholar 

  9. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    Article  Google Scholar 

  10. Calle-Vallejo, F. et al. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4, 1245–1249 (2013).

    Article  Google Scholar 

  11. Trasatti, S. Electrocatalysis by oxides—attempt at a unifying approach. J. Electroanal. Chem. 111, 125–131 (1980).

    Article  Google Scholar 

  12. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem. Cat. Chem. 3, 1159–1165 (2011).

    Google Scholar 

  13. Matsumoto, Y., Manabe, H. & Sato, E. Oxygen evolution on La1−xSrxCoO3 electrodes in alkaline solutions. J. Electrochem. Soc. 127, 811–814 (1980).

    Article  Google Scholar 

  14. Betley, T. A., Wu, Q., Voorhis, T. & Van Nocera, D. G. Electronic design criteria for O–O bond formation via metal-oxo complexes. Inorg. Chem. 47, 1849–1861 (2008).

    Article  Google Scholar 

  15. Risch, M. et al. Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS. J. Phys. Chem. C 117, 8628–8635 (2013).

    Article  Google Scholar 

  16. May, K. J. et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3, 3264–3270 (2012).

    Article  Google Scholar 

  17. Binninger, T. et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015).

    Article  Google Scholar 

  18. Danilovic, N. et al. Using surface segregation to design stable Ru–Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem. Int. Ed. Engl. 53, 14016–14021 (2014).

    Article  Google Scholar 

  19. Chang, S. H. et al. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat. Commun. 5, 4191 (2014).

    Article  Google Scholar 

  20. Reier, T. et al. Molecular insight in structure and activity of highly efficient, low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137, 13031–13040 (2015).

    Article  Google Scholar 

  21. Cherevko, S. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016).

    Article  Google Scholar 

  22. Stoerzinger, K. A., Qiao, L., Biegalski, M. D. & Shao-horn, Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2 . J. Phys. Chem. Lett. 118, 19733–19741 (2014).

    Google Scholar 

  23. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012).

    Article  Google Scholar 

  24. Lyons, M. E. G. & Floquet, S. Mechanism of oxygen reactions at porous oxide electrodes. Part 2–Oxygen evolution at RuO2, IrO2 and IrxRu1−x)O2 electrodes in aqueous acid and alkaline solution. Phys. Chem. Chem. Phys. 13, 5314–5335 (2011).

    Article  Google Scholar 

  25. Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    Article  Google Scholar 

  26. Saubanère, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    Article  Google Scholar 

  27. Fierro, S., Nagel, T., Baltruschat, H. & Comninellis, C. Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry. Electrochem. Commun. 9, 1969–1974 (2007).

    Article  Google Scholar 

  28. Wohlfahrt-Mehrens, M. & Heitbaum, J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. 237, 251–260 (1987).

    Article  Google Scholar 

  29. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. 45, 16501–16509 (2010).

  30. Graeupner, J. et al. Probing the viability of oxo-coupling pathways in iridium-catalyzed oxygen evolution. Organometallics 32, 5384–5390 (2013).

    Article  Google Scholar 

  31. Rong, X., Parolin, J. & Kolpak, A. M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6, 1153–1158 (2016).

    Article  Google Scholar 

  32. Jung, D. Y., Demazeau, G. & Choy, J. H. Preparation under oxygen pressures of new perovskites: (ALa)LiIrO6−δ (A = Ca, Sr, Ba). High Press. Res. 15, 121–125 (1996).

    Article  Google Scholar 

  33. Hayashi, K., Demazeau, G., Pouchard, M. & Hagenmuller, P. Preparation and magnetic study of a new iridium (V) perovskite: LaLi0.5Ir0.5O3 . Mater. Res. Bull. 15, 461–467 (1980).

    Article  Google Scholar 

  34. Cherevko, S. et al. Dissolution of noble metals during oxygen evolution in acidic media. Chem. Cat. Chem. 6, 2219–2223 (2014).

    Google Scholar 

  35. Hodnik, N. et al. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media. J. Phys. Chem. C 119, 10140–10147 (2015).

    Article  Google Scholar 

  36. Burke, L. D. & Murphy, O. J. Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes. J. Electroanal. Chem. 96, 19–27 (1979).

    Article  Google Scholar 

  37. Minguzzi, A. et al. Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts. Chem. Sci. 5, 3591–3597 (2014).

    Article  Google Scholar 

  38. Giordano, L. et al. pH dependence of OER activity of oxides: current and future perspectives. Catal. Today 262, 2–10 (2016).

    Article  Google Scholar 

  39. Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

    Article  Google Scholar 

  40. Aydinol, M. K., Kohan, A. F. & Ceder, G. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354–1365 (1997).

    Article  Google Scholar 

  41. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  Google Scholar 

  42. McCalla, E. et al. Visualization and impact of O–O peroxo-like dimers in high capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  Google Scholar 

  43. Yabuuchi, N., Yoshii, K., Myung, S., Nakai, I. & Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1∕3Ni1∕3Mn1∕3O2 . J. Am. Ceram. Soc. 133, 4404–4419 (2011).

    Google Scholar 

  44. Castel, E., Berg, E. J., El Kazzi, M., Nova, P. & Villevieille, C. Differential electrochemical mass spectrometry study of the interface of xLi2MnO3 â‹… (1 − x)LiMO2 (M = Ni, Co, and Mn) material as a positive electrode in Li-ion batteries. Chem. Mater. 26, 5051–5057 (2014).

    Article  Google Scholar 

  45. Suntivich, J., Gasteiger, H. A., Yabuuchi, N. & Shao-Horn, Y. Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J. Electrochem. Soc. 157, B1263–B1268 (2010).

    Article  Google Scholar 

  46. Barthel, J. Dr. Probe - High-Resolution (S)TEM Image Simulation Software (Ernst Ruska-Centrum für Mikroscopie und Spektrocopie mit Elecktronen, 2016); http://www.er-c.org/barthel/drprobe

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  48. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  49. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  Google Scholar 

  50. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  Google Scholar 

  51. Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    Article  Google Scholar 

  52. Deringer, V. L., Tchougr, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article  Google Scholar 

  53. Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Barthel of Ernst Ruska-Centre (Forschungszentrum Jülich) for valuable discussions and his support for the HRTEM simulation using the Dr Probe software. We would like to thank D. Giaume (ENSCP) for the ICP measurements and D. Foix (IPREM) for the XPS measurements. We would also like to thank E. Berg (PSI) for the DEMS measurements. We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under proposal sp12559, as well as A. Chadwick and G. Cibin for assistance and discussions. The authors acknowledge financial support from the European Union under the 7th Framework Program under a contract for an Integrated Infrastructure Initiative reference 312483-ESTEEM2. We acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA.

Author information

Authors and Affiliations

Authors

Contributions

A.G. designed the experiments. A.G. performed the synthesis, and structural and electrochemical analysis. A.D., W.D. and M.D. performed TEM measurements, atomic structural analyses and HRTEM image simulations. M.S. and M.-L.D. carried out the DFT calculations. A.G. and J.-M.T. wrote the manuscript, which all authors edited.

Corresponding author

Correspondence to Alexis Grimaud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Discussion, Supplementary Tables 1–4, Supplementary Figures 1–20 and Supplementary References (PDF 2546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimaud, A., Demortière, A., Saubanère, M. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat Energy 2, 16189 (2017). https://doi.org/10.1038/nenergy.2016.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing