Brought to you by:

A publishing partnership

A DECADE OF SHORT-DURATION GAMMA-RAY BURST BROADBAND AFTERGLOWS: ENERGETICS, CIRCUMBURST DENSITIES, AND JET OPENING ANGLES

, , , and

Published 2015 December 15 © 2015. The American Astronomical Society. All rights reserved.
, , Citation W. Fong et al 2015 ApJ 815 102 DOI 10.1088/0004-637X/815/2/102

0004-637X/815/2/102

ABSTRACT

We present a comprehensive catalog and analysis of broadband afterglow observations for 103 short-duration gamma-ray bursts (GRBs), comprised of all short GRBs from 2004 November to 2015 March with prompt follow-up observations in the X-ray, optical, near-infrared (NIR), and/or radio bands. These afterglow observations have uncovered 71 X-ray detections, 30 optical/NIR detections, and 4 radio detections. Employing the standard afterglow synchrotron model, we perform joint probability analyses for a subset of 38 short GRBs with well-sampled light curves to infer the burst isotropic-equivalent energies and circumburst densities. For this subset, we find median isotropic-equivalent γ-ray and kinetic energies of Eγ,iso ≈ 2 × 1051 erg, and EK,iso ≈ (1–3) × 1051 erg, respectively, depending on the values of the model input parameters. We further find that short GRBs occur in low-density environments, with a median density of n ≈ (3–15) × 10−3 cm−3, and that ≈80%–95% of bursts have densities of n ≲ 1 cm−3. We investigate trends between the circumburst densities and host galaxy properties, and find that events located at large projected offsets of ≳10 effective radii from their hosts exhibit particularly low densities of n ≲ 10−4 cm−3, consistent with an intergalactic medium-like environment. Using late-time afterglow data for 11 events, we find a median jet opening angle of θj = 16 ± 10°. We also calculate a median beaming factor of fb ≈ 0.04, leading to a beaming-corrected total energy release of Etrue ≈ 1.6 × 1050 erg. Furthermore, we calculate a beaming-corrected event rate of ${{\mathfrak{R}}}_{{\rm{true}}}={270}_{-180}^{+1580}$ Gpc−3 yr−1, or $\approx {8}_{-5}^{+47}$ yr−1 within a 200 Mpc volume, the Advanced LIGO/Virgo typical detection distance for NS–NS binaries.

Export citation and abstract BibTeX RIS

1. INTRODUCTION

The afterglow emission from gamma-ray bursts (GRBs) provides a unique way to probe their basic properties: the energy scale, circumburst densities, and jet opening angles. Nearly two decades of long-duration GRB afterglow observations established a median beaming-corrected kinetic energy release of ≈1051 erg (Frail et al. 2001; Berger et al. 2003; Friedman & Bloom 2005; Gehrels et al. 2008; Nysewander et al. 2009; Laskar et al. 2014), circumburst densities of ≈0.1–100 cm−3 (Panaitescu & Kumar 2002; Yost et al. 2003), and opening angles of ≈2°–20° (Frail et al. 2001; Bloom et al. 2003; Friedman & Bloom 2005; Kocevski & Butler 2008; Racusin et al. 2009; Ryan et al. 2015). In some cases, the radial density profiles of their circumburst environments reflect the wind environments expected for massive stars (Chevalier & Li 2000; Yost et al. 2003).

The afterglows of short-duration GRBs (T90 ≲ 2 s; Kouveliotou et al. 1993) are uniformly fainter (Berger 2007, 2010, 2014; Nakar 2007; Gehrels et al. 2008; Nysewander et al. 2009; Kann et al. 2011), and have thus far been primarily utilized for providing precise burst localizations, and therefore robust associations to host galaxies (e.g., Fong et al. 2013). These host studies have revealed that at least some short GRBs originate from older stellar populations, and are distinct in their global properties from the hosts of long GRBs (Zheng & Ramirez-Ruiz 2007; Berger 2009, 2014; Leibler & Berger 2010; Fong et al. 2013). The local and galactic environments of short GRBs (Berger 2010; Fong et al. 2010; Fong & Berger 2013), together with the lack of associated supernovae (e.g., Fox et al. 2005; Hjorth et al. 2005a; Soderberg et al. 2006; Kocevski et al. 2010; Fong et al. 2014), and the discovery of a near-IR "kilonova" from the short GRB 130603B (Berger et al. 2013; Tanvir et al. 2013), have provided strong observational support for a compact object binary merger progenitor involving two neutron stars or a neutron star and a stellar mass black hole (NS–NS/NS–BH; Eichler et al. 1989; Narayan et al. 1992).

As studies of the host galaxies of short GRBs have progressed at a rapid pace, knowledge of their basic explosion properties has been limited by both the paucity of afterglow detections and the relatively low detection rate of well-localized (∼few arcsecond uncertainty) short GRBs from the Swift satellite. Furthermore, afterglow studies greatly benefit from observations across several orders of frequency, which serve to provide significantly tighter constraints on the energy scales and circumburst densities than single band observations. Thus far, short GRB afterglow studies have either focused on events in a single wavelength regime (e.g., Berger 2007; Nakar 2007; Kann et al. 2011; Nicuesa Guelbenzu et al. 2012a), or on radio through X-ray observations of individual bursts (Berger et al. 2005; Soderberg et al. 2006; Fong et al. 2014). Comparative studies relative to long GRBs have only served to argue for lower energy scales and circumburst densities (e.g., Kann et al. 2011; Berger 2014), but in particular have not provided actual distributions in circumburst density. Thus, there have been no attempts to utilize the full set of broadband afterglow observations of short GRBs.

The relative difficulty of detecting short GRB afterglows is likely a direct reflection of a combination of low explosion energies and low circumburst densities. Predictions for NS–NS/NS–BH mergers span several orders of magnitude in density, depending on the precise distribution of natal kick velocities, merger timescales, and host galaxy type (Perna & Belczynski 2002; Belczynski et al. 2006; Behroozi et al. 2014). Similarly, different mechanisms of energy extraction to power a relavistic blast-wave can produce energy scales which differ by three orders of magnitude (e.g., Ruffert & Janka 1999b; Lee et al. 2005; Rosswog 2005). Furthermore, the calculation of the true short GRB energy scale and event rate directly depends on the geometry of their jets. Constraints on the energetics, densities, and jet opening angles from short GRB afterglows thus offer a way to study these fundamental questions. These basic properties also serve as critical inputs for the detectability of other electromagnetic counterparts to compact object mergers, and will directly affect follow-up strategies to gravitational wave signals detected with Advanced LIGO/VIRGO (e.g., Metzger & Berger 2012; Nissanke et al. 2013).

Taking advantage of the dedicated searches for short GRB afterglows at all wavelengths, we are now in a position to explore these basic properties for a large population of events for the first time. Here, we present the first comprehensive broadband catalog of short GRB afterglows, representing a decade of observations since the launch of Swift in 2004, and use this sample to constrain short GRB energies and circumburst densities. In Section 2, we introduce the sample and data reduction methods for X-ray through radio observations. In Section 3, we model the temporal and spectral behavior of the afterglows, and use the observations to infer constraints on the energetics and circumburst densities for each burst. In Section 4, we present the energetics and circumburst densities for 38 events with well-sampled afterglow data sets. In Section 5, we discuss the observational afterglow properties, jet opening angles, and investigate trends between the bursts and their galactic environments. Finally, in the Appendix, we provide X-ray, optical, and radio afterglow catalogs. In an upcoming work, we will address the effect of the basic inferred properties on the detectability of electromagnetic counterparts to gravitational wave sources.

Throughout the paper, all magnitudes are in the AB system and are corrected for Galactic extinction in the direction of each burst (Schlegel et al. 1998; Schlafly & Finkbeiner 2011). Unless otherwise noted, uncertainties correspond to 1σ confidence. We employ a standard ΛCDM cosmology with ΩM = 0.27, ΩΛ = 0.73, and H0 = 71 km s−1 Mpc−1.

2. OBSERVATIONS

2.1. Sample

We present afterglow observations for 103 short GRBs discovered by the Swift satellite (Gehrels et al. 2004), Fermi satellite (Atwood et al. 2009; Meegan et al. 2009), Konus-Wind (Aptekar et al. 1995), High Energy Transient Explorer 2 (Ricker et al. 2003), or the Interplanetary Network (IPN; Hurley et al. 2010) between 2004 November and 2015 March. We restrict our sample to all bursts with T90 ≲ 2 s and follow-up observations in any of the X-ray, optical, near-infrared (NIR) or radio bands on timescales of δt ≲ few days (where δt corresponds to the time after the γ-ray trigger). We also include three events (GRBs 050724A, 090607 and 100213A) which have T90 ≈ 2.5–3 s but which exhibit the spectral hardness and negligible spectral lags typical of short GRBs (Marshall et al. 2009; Grupe et al. 2010). For bursts with optical/NIR follow-up, we only include data from bursts with afterglow detections or meaningful limits of ≳20 mag at δt ≲ 1 day. We note that included in our sample are three bursts with T90 ≲ 2 s but which do not exhibit the same γ-ray properties as canonical short-hard GRBs, either due to their large spectral lags and soft γ-ray spectra (GRBs 090426; Ukwatta et al. 2009 and 131004A Stamatikos et al. 2013), or due to where they fall on the lag-luminosity relation of GRBs (GRB 060121; Kann et al. 2011). We also notably exclude GRBs 060614 and 100816A, both of which had durations of T90 > 2 s but which otherwise exhibit some properties similar to traditional short-hard GRBs (e.g., Zhang et al. 2007; Jin et al. 2015; Yang et al. 2015). However, for complete uniformity and simplicity, we only employ a T90 cut in our sample selection so as not to introduce any additional priors on the distributions. Basic information for the sample of 103 events, including durations, redshifts, and the available follow-up in each observing band, is presented in Table 1.

Table 1.  Short GRB Basic Information

GRB T90 z X-ray Opt/NIR Radio
  (s)        
050202 0.27 N N
050509B 0.04 0.225 Y N N
050709 0.07 0.161 Y Y N
050724A 3.0 0.257 Y Y Y
050813 0.6 0.72/1.8 Y N N
050906 0.26 N N N
050925 0.07 N N
051105A 0.09 Na N
051210 1.3 >1.4 Y N
051221A 1.4 0.546 Y Y Y
060121 2.0 <4.1 Y Y
060313 0.7 <1.7 Y Y N
060502B 0.09 0.287 Y N
060801 0.5 1.130 Y N N
061006 0.4 0.438 Y Y
061201 0.8 0.111 Y Y
061210 0.2 0.41 Y N N
061217 0.2 0.827 Y N
070209 0.09 N N
070406b 1.20 N N
070429B 0.5 0.902 Y N N
070707b 1.1 <3.6 Y Y
070714B 2.0 0.923 Y Y N
070724A 0.4 0.457 Y Y N
070729 0.9 0.8 Y N N
070809 1.3 0.473 Y Y
070810B 0.08 N N
070923 0.05 N
071017b 0.5 N
071112Bb 0.30 N N N
071227 1.8 0.381 Y Y
080121b 0.7 N N
080123 0.4 Y N
080426 1.7 Y N
080503 0.3 <4.2 Y Y N
080702A 0.5 Y N N
080905A 1.0 0.122 Y Y
080919 0.6 Y N
081024A 1.8 Y N N
081024Bb 0.4 Na N N
081226A 0.4 <4.1 Y Y N
081226Bb 0.7 N N N
090305A 0.4 <4.1 Y Y
090417A 0.07 N
090426 1.3 2.609 Y Y
090510 0.3 0.903 Y Y N
090515 0.04 0.403 Y Y N
090607 2.3c Y N
090621B 0.14 Y N N
090715A 0.5 N N
090916b 0.3 N
091109B 0.3 <4.4 Y Y
091117b 0.43 Na N N
100117A 0.30 0.915 Y Y
100206A 0.1 0.407 Y N
100213A 2.4d Y
100625A 0.3 0.452 Y N N
100628A 0.04 Ne N N
100702A 0.16 Y N
101219A 0.6 0.718 Y N
101224A 0.2 Y N
110112A 0.5 <5.3 Y Y N
110112Bb 0.5 N N N
110420Bb 0.08 Na N N
111020A 0.4 Y N N
111117A 0.5 1.3 Y N N
111121A 0.45 Y N
111222Ab 0.3 Y
120229A 0.22 N N
120305A 0.1 Y N N
120521A 0.45 Y N N
120630Af 0.6 Y
120804A 0.81 1.3 Y Y N
120817Bb 0.19 N N
121226A 1.0 Y N N
130313A 0.26 Y N N
130515A 0.29 Y N
130603B 0.18 0.356 Y Y Y
130626A 0.16 N
130716A 0.8 Y N N
130822A 0.04 Y N N
130912A 0.28 <4.1 Y Y N
131004A 1.54 0.717 Y Y N
131125Ag 0.5 N
131126Ag 0.3 N
131224Ab 0.8 N N
140129B 1.36 <1.5 Y Y
140320Af 0.45 Y N
140402Ab 0.03 N N
140414Ab 0.7 N N
140516A 0.19 Y N N
140606Ab 0.34 N N
140619Bb 0.5 N N N
140622A 0.13 0.959 Y N N
140903A 0.30 0.351 Y Y Y
140930B 0.30 <4.1 Y Y N
141202Ab 1.3 N
141205Ab 1.1 N N
141212A 0.30 0.596 Y N N
150101A 0.06 Y N
150101B 0.018 0.134 Y Y N
150120A 1.20 0.460 Y N N
150301Ab 0.48 Y

Notes. Short GRBs with X-ray, optical/NIR or radio follow-up observations. "Y" = detection, "N" = non-detection, and ⋯ means there is no follow-up in that band.

aThere are XRT observations but no X-ray flux upper limit is reported. bObserving constraint or delayed Swift/XRT observations. cThis burst has T90 = 2.3 ± 0.1 s but is spectrally hard (Marshall et al. 2009). dThis burst has T90 = 2.4 ± 0.4 s, but the spectral lag of 5 ± 15 ms indicates this is a short-hard burst (Grupe et al. 2010). eDespite initial claims that this burst had a faint X-ray afterglow with Swift/XRT (Starling et al. 2010), a re-analysis of the data shows the source has a low significance of 2.3σ (Fong et al. 2013). Thus, for the purposes of our sample, we conclude that this burst does not have a detected XRT afterglow. fDelayed reporting of burst position preventing immediate ground-based follow-up. gIPN-localized burst with no Swift follow-up.

Download table as:  ASCIITypeset images: 1 2

Of the 103 bursts in our sample, 96 (93%) have X-ray follow-up observations, 87 (84%) have optical/NIR observations, and 60 (58%) have radio observations. These observations have uncovered 71 X-ray afterglows, 30 optical/NIR afterglows, and 4 radio afterglows, leading to detection fractions of 74%, 34%, and 7%, respectively (Table 1). The observations for these bursts are cataloged in the Appendix (Tables 68).

Thirty-one bursts in this sample have redshifts determined from their host galaxies (Table 1), while two events have spectroscopic redshifts from absorption in their afterglows, GRB 090426A: (Antonelli et al. 2009; Levesque et al. 2010) and GRB 130603B (Cucchiara et al. 2013; de Ugarte Postigo et al. 2014). Furthermore, we place upper limits on the redshift from the detection of the optical afterglow, and therefore the lack of suppression blueward of the Lyman limit (λ0 = 912 Å) or Lyα line (λ0 = 1216 Å), for 11 bursts (Table 1). We also place a lower limit of z > 1.4 for GRB 051210 from the lack of detection of emission or absorption features in the spectrum of the host galaxy (Berger et al. 2007). In addition to the broadband afterglow observations that have been published thus far, we present new optical/NIR observations for 11 bursts (Table 7), and new radio observations for 25 events (Table 8).

2.1.1. Observing Constraints

Of the 25 bursts with X-ray observations and no detected X-ray afterglow, 18 events had a delayed Swift/X-ray Telescope (XRT) response due to an observing constraint or burst discovery from another satellite (indicated in Table 1); thus, the non-detection of X-ray afterglows for these events are due to factors unrelated to the bursts themselves. Likewise, 12 bursts with optical observations and no detected optical afterglow have an observing constraint (e.g., delayed precise localization from Swift, crowded field, high Galactic extinction sightline, position contaminated by a bright star), making the detection of an optical afterglow particularly challenging (Table 7). Only one burst (GRB 150101B) with radio observations is severely contaminated by a neighboring bright source, thus preventing a deep radio limit at the afterglow position. Taking these observing constraints into account, we find that the vast majority (91%) of bursts that have X-ray follow-up and no observing constraints result in an X-ray afterglow detection. Similarly, the fraction of detected optical afterglows increases to 40% after correcting for observing constraints. The radio detection fraction remains at ≈7%.

2.2. X-Rays

We gather all available X-ray afterglow observations from the Swift light curve repository5 (Evans et al. 2007a, 2009), the GRB Coordinates Network (GCN) Circulars, and the literature (Table 6). The data were taken with the XRT on board Swift, the Chandra X-ray Observatory, and the X-ray Multi-Mirror Mission (XMM-Newton). Ten bursts have Chandra observations, while three bursts have XMM-Newton observations (Table 6). We use unabsorbed fluxes and uncertainties in the 0.3–10 keV energy band when they are available; otherwise, we use the count-rate light curves in the same energy range and convert to fluxes (described later in this section). For bursts with multiple upper limits, we only include those which help to constrain the temporal behavior of the X-ray light curve. Of the 96 short GRBs with X-ray observations, four events have no reported measurements or upper limits.6 Therefore, the resulting late-time X-ray afterglow catalog is comprised of 92 events (Table 6).

When applicable, we convert the count rate light curves to unabsorbed fluxes using the count-rate-to-unabsorbed-flux conversion factors provided by the Swift light curve repository. These factors are derived from the automatic spectral fitting routine (Evans et al. 2009). This routine fits the X-ray spectrum for each burst to an absorbed power law model characterized by photon index, Γ, and the intrinsic neutral hydrogen absorption column, NH,int, in excess of the Galactic column density in the direction of the burst (Kalberla et al. 2005; Wakker et al. 2011; Willingale et al. 2013). We use spectral parameters extracted in the Photon Counting mode when available; otherwise, we use parameters from the Windowed Timing mode. In ten cases, the value of NH,int is highly uncertain, but consistent with zero. Therefore, utilizing the median value of NH,int may result in an over-estimate of the true unabsorbed flux. Instead of using the given conversion factors for these bursts, we calculate the unabsorbed fluxes using WebPIMMS,7 setting NH,int = 0. For 16 events, no count-rate-to-unabsorbed-flux conversion factor is available, so we employ a fiducial value of 1 × 10−11 erg cm−2 s−1 ct−1 set by the median value for all of the events in our sample. Applying these conversion factors to each of the count-rate light curves from Swift/XRT, Chandra and XMM-Newton, we obtain the unabsorbed fluxes, 1σ uncertainties, and 3σ upper limits for each burst (Table 6).

To enable comparison of the X-ray light curves to the optical and radio data, we convert the X-ray fluxes to flux densities, Fν,X, at a fiducial energy of 1 keV (${F}_{\nu ,{\rm{X}}}\propto {\nu }^{{\beta }_{{\rm{X}}}}$ where ${\beta }_{{\rm{X}}}\equiv 1-{\rm{\Gamma }}$). When no spectral information is available, we use a fiducial spectral index of βX,med = −1.0, set by the median value of the events in our sample. The flux densities, 1σ uncertainties, and 3σ upper limits are listed in Table 6, and the resulting light curves are shown in Figure 1.

Figure 1.

Figure 1. Broadband afterglow light curves of all short GRBs with follow-up observations between 2004 November and 2015 March. In all panels, circles denote detections, triangles indicate 3σ upper limits, and solid lines connect observations for the same burst. Top left: 0.3–10 keV X-ray afterglow light curves for 92 short GRBs with X-ray observations corresponding to the events in Table 6. Included are 3σ upper limits for 29 bursts with no detected X-ray emission at δt ≳ 1000 s (blue triangles). The data for δt ≳ 1000 s (gray vertical band) are used in our subsequent afterglow analysis. Top right: optical afterglow observations for 87 short GRBs corresponding to the events in Table 7. The 30 bursts with detected optical afterglows are shown (orange circles), along with 3σ upper limits for bursts with an X-ray afterglow detection (filled triangles), and bursts with no X-ray afterglow detection (open triangles). Bottom left: radio afterglow data for 60 short GRBs corresponding to the events in Table 8. The light curves for four short GRBs with radio afterglow detections are shown: GRBs 050724A (black), 051221A (red), 130603B (light red), and 140903A (maroon). Upper limits for the remaining 56 events with no detected radio afterglows are shown (3σ; gray triangles), including 25 bursts for which radio observations have not been published in the literature thus far.

Standard image High-resolution image

Finally, we present Chandra observations for three bursts that have not been published in the literature thus far: GRBs 120804A (PI: Burrows), 140930B (PI: Fong) and 150101B (PIs: Troja, Levan). We retrieve the pre-processed Level 2 data from the Chandra archive. We use the CIAO data reduction package to extract a count-rate within a 2farcs5-radius source aperture centered on the X-ray afterglow position, and utilize source-free regions on the same chip to estimate the background. For GRB 120804A, we obtain spectral parameters from earlier Chandra epochs of the same burst (Berger et al. 2013). For GRBs 140930B and 150101B, we use CIAO/specextract to extract a spectrum and obtain the spectral parameters. We then apply these parameters to the count rate to convert to flux density as described above (Table 6).

2.3. Optical/NIR

For each burst we gather all available optical and NIR afterglow observations from the literature and GCN Circulars (see Table 7 for references). When there are multiple upper limits for a given burst, we include only the deepest limits at δt ≲ 1 day. We convert all magnitudes to the AB system using instrument-specific conversion factors when available, or the standard conversions following Blanton & Roweis (2007). We correct all observations for Galactic extinction in the direction of each burst (Schlegel et al. 1998; Schlafly & Finkbeiner 2011), and convert AB magnitudes to flux densities, Fν,opt. A log of observations for 87 events with optical/NIR follow-up is provided in Table 7, and the light curves and upper limits are shown in Figure 1. Bursts with no detected optical afterglow are further classified by the detection of an X-ray afterglow (Figure 1).

We also present optical/NIR observations of 11 short GRBs that have not been published in the literature thus far: GRBs 070724A, 100628A, 110420B, 120229A, 130716A, 140402A, 140606A, 140619B, 140930B, 150101B, and 150120A. These observations were enabled by target-of-opportunity programs on the twin 6.5-m Magellan telescopes (PI: Berger), the twin 8 m Gemini telescopes (PIs: Berger, Cucchiara, Fox, Tanvir), and the 6.5-m MMT (PIs: Berger, Fong). We use standard tasks in the IRAF/ccdred package to process the Magellan and MMT data, and the IRAF/gemini package to process the Gemini data. For each of these bursts, we obtained the first epoch of observations at δt ≈ 1–20 hr and at least one additional set of observations at δt ≳ 24 hr to provide a template (Table 7). To assess any fading between the two epochs, we perform digital image subtraction for each burst and filter using the ISIS software (Alard 2000). With the exception of GRBs 070724A, 140930B, and 150101B, we find no significant emission in any of the subtracted images. We therefore employ aperture photometry using standard tasks in IRAF to place 3σ upper limits on the optical/NIR afterglow brightness. To measure the afterglow brightness for GRBs 070724A and 140903B, we employ aperture photometry on the detected point source in the subtracted image. For GRB 150101B, the afterglow position in the subtracted image is contaminated by residual emission from its bright host galaxy; thus, we use PSF photometry to measure the afterglow brightness. Details of the photometry will be outlined in an upcoming paper (W. Fong et al. 2015, in preparation) The observational details, afterglow brightness and 3σ upper limits for these bursts are presented in Figure 1 and listed in Table 7.

2.4. Radio

We gather all available radio afterglow data taken with the Karl G. Jansky Very Large Array (VLA), Westerbork Synthesis Radio Telescope (WSRT), Australia Telescope Compact Array (ATCA), and Combined Array for Research in Millimeter-wave Astronomy (CARMA). The resulting radio afterglow catalog is comprised of 60 short GRBs (Table 8). The large majority of events, 53 (88%), were observed with the VLA (Table 8), 28 of which were observed with the upgraded VLA, which has a tenfold improvement in sensitivity (Perley et al. 2011). We present new observations enabled by target-of-opportunity programs with the upgraded VLA (PI: Berger) and CARMA (PI: Zauderer) for 25 bursts (Table 8). In 11 cases, we obtained multiple sets of observations to probe the radio emission on timescales spanning δt ≈ 1–10 days.

For data calibration and analysis of VLA observations, we follow standard procedures in the Astronomical Image Processing System (AIPS; Greisen 2003). For CARMA observations, we use the Multichannel Image Reconstruction, Image Analysis and Display (MIRIAD) software package (Sault et al. 1995). For the majority of cases, we do not find any uncataloged radio sources in or around the X-ray or γ-ray positions. To calculate the 3σ upper limits on the radio afterglow brightness, we measured the rms noise in the map using a large source-free central region utilizing AIPS/IMSTAT for VLA data and MIRIAD/IMSTAT for CARMA data. The radio afterglow detections and upper limits for 60 short GRBs with radio observations are listed in Table 8 and displayed in Figure 1. Flux densities reported here supercede those reported in GCN Circulars.

Four bursts have detected radio afterglows, and all discoveries were made with the VLA (GRB 050724A: Berger et al. 2005; Panaitescu 2006; GRB 051221A: Soderberg et al. 2006; GRB 130603B: Fong et al. 2014; GRB 140903A: this work). In particular, we present the discovery of the radio afterglow of GRB 140903A, which is detected at three frequencies: 1.4, 6.0, and 9.8 GHz (Figure 1 and Table 8), and will be further discussed in an upcoming work.

2.5. Afterglow Brightness and TOO Response Times

Thanks to Swift, X-ray and optical follow-up typically commences within ≈60 s after the GRB is detected. While Swift/XRT is responsible for nearly all of the X-ray afterglow detections, only three short GRBs have detected optical afterglows with Swift/UVOT (Table 7). Thus, the detection of short GRB afterglows, or placement of meaningful upper limits, in the optical and radio bands relies on ground-based target-of-opportunity programs. For the 30 short GRBs with detected optical afterglows, the median optical afterglow brightness is ≈23.0 mag at δt ≈ 7.0 hr. The median 3σ limit placed on bursts with an X-ray afterglow and no detected optical afterglow is ≳23.8 mag with a median response time of δt ≈ 7.4 hr, while the limit placed on bursts with no detected X-ray or optical afterglow is less constraining and more delayed, ≳22.7 mag at δt ≈ 12.2 hr (Figure 1). This is likely due to the more limited number of facilities with instruments that can cover the comparatively larger γ-ray positional error circles. However, since we only include bursts with optical limits of ≳20 mag, we are excluding a fraction of bursts with very shallow follow-up; thus the limits here for bursts with only γ-ray localizations are an optimistic representation of the entire population. In the radio band, the median 3σ upper limit for all observations is ≲74.1 μJy, and the median response time to the first observation is δt ≈ 24.7 hr. In more recent cases, we set unprecedented 3σ limits of 15–20 μJy using the upgraded VLA on timescales of δt ≈ 1–10 days.

3. BROADBAND AFTERGLOW ANALYSIS

We utilize the broadband afterglow observations to constrain the explosion properties and circumburst environment of each burst. We adopt the standard synchrotron model for a relativistic blastwave in a constant density medium (Sari et al. 1998; Granot & Sari 2002), as expected for a non-massive star progenitor. This model provides a mapping from the broadband afterglow flux densities to the burst physical parameters: the isotropic-equivalent kinetic energy (EK,iso), circumburst density (n), fractions of post-shock energy in radiating electrons (epsilone) and magnetic fields (epsilonB), and the electron power-law distribution index (p), with N(γ) ∝ γp for γ ≳ γmin, where γmin is the minimum Lorentz factor of the electron distribution.

The synchrotron spectrum is characterized by a flux normalization and three break frequencies: the self-absorption frequency (νa), the peak frequency (νm), and the cooling frequency (νc). Constraints on the physical parameters require knowledge of where the synchrotron break frequencies are located with respect to the observing bands. In most cases, there is not enough information to constrain the locations of νa and νm with respect to the observing bands, so we make assumptions about their locations (detailed in the next sections). However, there are several cases in which we can use the available data to determine the location of νc with respect to the X-ray and optical bands. To determine the location of νc, we first determine the temporal and spectral power-law indices (α and β, respectively, where Fν ∝ tανβ) from the X-ray and optical light curves and spectra. We then compare these indices to the standard relations given by the synchrotron model to determine whether νc is located above or below the X-ray band. This also allows us to calculate the value of p, and governs how the fluxes map to the burst physical properties (Granot & Sari 2002).

3.1. Temporal and Spectral Behavior

3.1.1. X-Rays

To investigate the temporal behavior of the X-ray afterglows, we utilize χ2-minimization to fit a single power law model to each light curve in the form ${F}_{\nu ,{\rm{X}}}\propto {t}^{{\alpha }_{{\rm{X}}}},$ with temporal index αX as the single free parameter and the best-fit flux normalization C0 given by

Equation (1)

where Fmodel,i are the un-normalized model fluxes, FX,i and σX,i are the observed fluxes and uncertainties, respectively, and N is the number of data points. Since early-time X-ray afterglow light curves are often subject to steep decays, plateaus, or flares which may contaminate the afterglow emission (Nousek et al. 2006; Zhang et al. 2006; Margutti et al. 2011, 2013), we only utilize X-ray data at δt ≳ 1000 s, when bursts have typically settled into the power-law afterglow phase. For the X-ray light curves, we initially include all of the available data at δt ≳ 1000 s in the fit. In a few cases, there are light curve features beyond δt ≈ 1000 s which significantly affect the fit: flares (GRBs 050724A and 111121A), plateaus (GRB 051221A), or steepenings (GRBs 051221A and 111020A). For these bursts, we exclude the time intervals that contain such features in the fits. In 10 cases, there only exists a single detection and an upper limit at δt ≳ 1000 s, so we can only extract an upper limit for αX. The resulting best-fit values for αX, along with 1σ uncertainties, are listed in Table 2. Also listed are the X-ray spectral indices, βX, from the relation ${\beta }_{{\rm{X}}}\equiv 1-{\rm{\Gamma }}.$ The X-ray afterglows have weighted mean values and 1σ uncertainties of $\langle {\alpha }_{{\rm{X}}}\rangle =-{1.07}_{-0.37}^{+0.31}$ and $\langle {\beta }_{{\rm{X}}}\rangle =-{0.89}_{-0.78}^{+0.38},$ and median values of αX,med ≈ −1.16 and βX,med ≈ −1.06.

Table 2.  Short GRB Spectral and Temporal Power-law Indices

GRB αX βX αopt βopt
050509B −1.10 ± 0.25 −0.88 ± 0.34
050709 −1.23 ± 0.10 −1.24 ± 0.35 −1.42 ± 0.08
050724A −0.93 ± 0.08 −0.81 ± 0.15 −1.74 ± 0.11a −0.82 ± 0.03a
050813 <−0.004 $-{1.3}_{-1.3}^{+2.1}$
051210 −2.1 ± 0.5
051221A −1.08 ± 0.12 −1.0 ± 0.2 −0.97 ± 0.06
060121 −1.23 ± 0.20 −1.07 ± 0.16 −0.60 ± 0.24
060313 −1.47 ± 0.39 −0.96 ± 0.09 −0.70 ± 0.19 −1.35 ± 0.19
060502B $-{2.07}_{-0.54}^{+1.50}$
060801 −0.68 ± 0.12
061006 −0.85 ± 0.30 −0.90 ± 0.25 −0.43 ± 0.08
061201 −1.96 ± 1.18 −0.66 ± 0.12
061210 −1.71 ± 1.15 $-{1.86}_{-0.61}^{+1.26}$
070429B <−1.12 −2.0 ± 0.63
070707 <−0.65 −2.55 ± 0.22
070714B −1.96 ± 0.69 −1.07 ± 0.19 −0.81 ± 0.11
070724A −0.95 ± 0.33 −0.60 ± 0.25 <−0.15 −0.58 ± 0.02
070729 $-{0.5}_{-0.25}^{+0.44}$
070809 −1.09 ± 1.10 $-{0.37}_{-0.07}^{+0.13}$ −0.73 ± 0.33
071227 −0.97 ± 0.27 −0.90 ± 0.31 <−0.24
080123 −0.77 ± 0.19 −1.6 ± 0.4
080426 −1.54 ± 0.33 −1.03 ± 0.16
080503 $-{1.53}_{-0.12}^{+0.26}$
080702A <−0.38 −1.00 ± 0.43
080905A −0.53 ± 0.18 −0.39 ± 1.36
080919 −1.23 ± 0.69 $-{1.9}_{-0.38}^{+0.63}$
081024A −0.70 ± 0.38
081226A $-{2.27}_{-0.32}^{+1.24}$ −0.95 ± 0.30 −1.67 ± 0.67b
090305A −0.74 ± 0.09 −0.71 ± 0.27
090426A −1.15 ± 0.16 −1.04 ± 0.09 −0.58 ± 0.16 −0.94 ± 0.06b
090510 −1.79 ± 0.63 −0.75 ± 0.08 −2.37 ± 0.29 −0.85 ± 0.05
090515 $-{1.53}_{-0.28}^{+0.78}$ <−0.12
090607 <−0.72 −1.2 ± 0.4
090621B −1.48 ± 0.54 $-{2.7}_{-1.0}^{+0.68}$
091109B −0.83 ± 0.28 −1.1 ± 0.3 −0.49 ± 0.45
100117A −1.6 ± 0.3 −1.60 ± 0.33
100206A $-{2.05}_{-0.53}^{+1.07}$
100213 $-{2.0}_{-1.0}^{+1.2}$
100625A <0.37 −1.5 ± 0.2
100702A −1.7 ± 0.3
101219A −1.37 ± 0.13 −0.8 ± 0.1
101224A $-{2.4}_{-0.6}^{+1.8}$
110112A −1.10 ± 0.05 −1.2 ± 0.2 <−0.32
111020A −0.78 ± 0.05 −1.04 ± 0.16
111117A −1.21 ± 0.05 −1.0 ± 0.2
111121A −1.55 ± 0.30 −0.90 ± 0.12
111222A <−0.30 $-{0.7}_{-0.4}^{+1.4}$
120305A $-{2.2}_{-0.4}^{+0.6}$
120521A −0.8 ± 0.25
120630A −0.8 ± 0.3
120804A −1.02 ± 0.10 −1.1 ± 0.1
121226A −1.12 ± 0.28 −1.5 ± 0.25
130313A $-{1.6}_{-2.5}^{+2.1}$
130515A −0.7 ± 0.31
130603B −1.88 ± 0.15 −1.2 ± 0.1 −1.26 ± 0.05 −2.0 ± 0.1b
130716A <−0.52 $-{1.1}_{-0.38}^{+0.56}$
130822A $-{0.89}_{-0.34}^{+1.1}$
130912A −1.33 ± 0.18 −0.57 ± 0.13 <−0.42
131004A −1.1 ± 0.61 −0.8 ± 0.3 −1.94 ± 0.25 −1.52 ± 0.13b
140129B −1.6 ± 0.26 −0.97 ± 0.11 −1.54c
140320A <−0.23 $-{3.8}_{-0.88}^{+2.6}$
140516A −0.42 ± 0.14 −0.70 ± 0.44
140622A <−0.16 $-{0.55}_{-0.18}^{+0.42}$
140903A −1.05 ± 0.20 −0.60 ± 0.10
140930B −1.27 ± 0.15 −0.73 ± 0.28
141212A $-{1.7}_{-0.81}^{+2.75}$
150101A <−0.12 −0.40 ± 0.56
150101B −1.07 ± 0.15 −0.67 ± 0.17 −1.01 ± 0.62
150120A −1.0 ± 0.31
150301A −0.7 ± 0.13

Notes. Error bars correspond to 1σ confidence. When applicable, αX and αopt represent pre-jet break values. Values of βopt are observed values and are uncorrected for intrinsic rest-frame extinction, AV.

aThese values are computed over the same time interval as the X-ray flare that is superimposed on the underlying afterglow power-law decay. No optical detections exist for the underlying afterglow. bThis value corresponds to the spectral behavior after the jet break. cNo uncertainties are given for the optical light curve.

Download table as:  ASCIITypeset images: 1 2

3.1.2. Optical

We determine the temporal index of the optical observations (αopt, where ${F}_{\nu ,\mathrm{opt}}\propto {t}^{{\alpha }_{\mathrm{opt}}}$) in the same manner as described in Section 3.1.1, using the filter with the most well-sampled light curve for each burst. If there are multiple filters for which we can determine αopt, we independently fit αopt for each filter and report the weighted mean (Table 2). A few short GRBs have well-measured optical spectral indices from contemporaneous multi-band data, but do not have a well-sampled light curve in a single filter, preventing a measurement of αopt. For these events, we use the measured value of βopt (see below) to extrapolate all of the available afterglow data to a single filter, and then determine the temporal decay index from these observations. In this manner, we are able to measure the optical temporal decay index for 19 short GRBs, and place upper limits in five cases for bursts with only a single detection and an upper limit. The best-fit optical temporal indices and 1σ uncertainties are listed in Table 2. The weighted mean for the 19 short GRBs with measured values is $\langle {\alpha }_{{\rm{opt}}}\rangle =-{1.07}_{-0.61}^{+0.31},$ and the median is αopt,med ≈ −0.99.

If there are contemporaneous observations in multiple filters, we use these to determine the observed spectral slope, βopt (${F}_{\nu ,\mathrm{opt}}\propto {\nu }^{{\beta }_{{\rm{opt}}}}$). For a few bursts, there are multi-band observations taken at different times, as well as a measurement of αopt from a well-sampled light curve in a single filter; in such cases, we use αopt to interpolate the data from multiple filters to a common time. To determine βopt, we then use χ2-minimization to fit the optical/NIR photometry to a power law model. The values of βopt are listed in Table 2. The weighted mean for all short GRBs with determined spectral indices after incorporating rest-frame extinction (Section 3.1.3) is $\langle {\beta }_{{\rm{opt}}}\rangle =-{0.71}_{-0.51}^{+0.25},$ and the median is βopt,med ≈ −0.88.

3.1.3. Rest-frame Extinction

In four cases where there are contemporaneous observations in multiple optical/NIR filters, a single power law model provides a poor fit to the broadband photometry (${\chi }_{\nu }^{2}\gtrsim 3$). For these bursts, we include the line-of-sight rest-frame extinction from the host galaxy (${A}_{V}^{{\rm{host}}}$) as a second free parameter in the fit. We constrain the extinction using the Milky Way extinction curve (Cardelli et al. 1989), and employ the burst redshifts (Table 1) to obtain the rest-frame extinction. For bursts with no determined spectroscopic redshift, we assume z = 0.5 set by the median of the short GRB population (Berger 2014). We find non-zero extinction values for GRBs 060121, 070724A, 081226A, and 130603B (Table 3). The resulting values for the optical spectral indices, uncertainties, and ${A}_{V}^{{\rm{host}}}$ are listed in Table 3.

Table 3.  Inferred Properties

GRB ${A}_{V}^{{\rm{host}}}$ νc < νX ? p epsilonB Eγ,iso,52 $\langle {E}_{{\rm{K,iso,52}}}\rangle $ ηγ $\langle {\text{}}n\rangle $
  (mag)       (1052 erg) (1052 erg)   (cm−3)
050709 0 Y 2.31 ± 0.13 0.1 0.09 ${2.6}_{-0.5}^{+0.8}\times {10}^{-3}$ 0.97 ${1.0}_{-0.4}^{+0.5}$
  0 Y 2.31 ± 0.13 0.01 0.09 ${6.2}_{-0.6}^{+0.4}\times {10}^{-3}$ 0.93 ${1.6}_{-0.2}^{+0.2}$
050724A 0 N 2.29 ± 0.10 10−4 0.24 ${0.18}_{-0.05}^{+0.08}$ 0.58 ${0.89}_{-0.49}^{+0.58}$
051221A 0 Y 2.24 ± 0.07 0.1 1.3 ${0.16}_{-0.01}^{+0.01}$ 0.89 ${0.03}_{-0.005}^{+0.006}$
  0 Y 2.24 ± 0.07 0.01 1.3 ${0.27}_{-0.03}^{+0.03}$ 0.83 ${0.14}_{-0.04}^{+0.05}$
060121 1.6 Y 2.24 ± 0.20 0.1 4.5 ${0.20}_{-0.04}^{+0.05}$ 0.96 ${5.4}_{-2.2}^{+5.6}\times {10}^{-3}$
  1.6 Y 2.24 ± 0.20 0.01 4.5 ${0.23}_{-0.04}^{+0.05}$ 0.95 ${0.16}_{-0.06}^{+0.17}$
060313a,b 0 Y 2.03 ± 0.20 0.1 2.9 ${0.45}_{-0.05}^{+0.05}$ 0.87 ${3.3}_{-0.5}^{+1.0}\times {10}^{-3}$
061006 0 N 2.39 ± 0.31 0.1 1.1 ${0.64}_{-0.37}^{+0.85}$ 0.63 ${2.2}_{-1.9}^{+16}\times {10}^{-5}$
  0 N 2.39 ± 0.31 0.01 1.1 ${1.1}_{-0.7}^{+2.1}$ 0.50 ${1.2}_{-1.1}^{+29}\times {10}^{-4}$
061201 0 N 2.35 ± 0.24 0.1 0.05 ${0.05}_{-0.03}^{+0.10}$ 0.47 ${5.0}_{-4.6}^{+66}\times {10}^{-5}$
  0 N 2.35 ± 0.24 0.01 0.05 ${0.1}_{-0.09}^{+0.4}$ 0.29 ${2.7}_{-2.6}^{+120}\times {10}^{-4}$
070714Bb,c 0.5 Y 2.30 ± 0.35 0.1 1.7 ${0.1}_{-0.02}^{+0.02}$ 0.94 ${0.056}_{-0.011}^{+0.024}$
070724A 1.5 N 2.24 ± 0.33 0.1 0.03 ${0.35}_{-0.20}^{+0.49}$ 0.07 ${1.9}_{-1.6}^{+12}\times {10}^{-5}$
  2.0 N 2.24 ± 0.33 0.01 0.03 ${1.1}_{-0.8}^{+3.0}$ 0.02 ${9.3}_{-9.2}^{+210}\times {10}^{-5}$
070809 0 N 2.12 ± 1.47d 0.1 0.09 ${0.5}_{-0.3}^{+0.7}$ 0.14 ${2.2}_{-1.9}^{+15}\times {10}^{-5}$
  0 N 2.12 ± 1.47d 0.01 0.09 ${1.1}_{-0.8}^{+2.7}$ 0.07 ${1.2}_{-1.1}^{+30}\times {10}^{-4}$
071227 0 Y 1.92 ± 0.31 0.1 0.14 ${8.4}_{-1.9}^{+2.5}\times {10}^{-3}$ 0.94 ${1.9}_{-1.1}^{+2.4}$
  0 Y 1.92 ± 0.31 0.01 0.14 ${8.9}_{-1.8}^{+2.6}\times {10}^{-3}$ 0.94 ${60}_{-33}^{+75}$
080426 0 Y 2.29 ± 0.26 0.1 0.35 ${0.05}_{-0.01}^{+0.01}$ 0.87 ${0.04}_{-0.02}^{+0.04}$
  0 Y 2.29 ± 0.26 0.01 0.35 ${0.06}_{-0.01}^{+0.01}$ 0.85 ${1.2}_{-0.5}^{+1.2}$
080905A 0 N 2.06 ± 0.36 0.1 0.02 ${0.04}_{-0.03}^{+0.12}$ 0.34 ${1.3}_{-1.2}^{+33}\times {10}^{-4}$
  0 N 2.06 ± 0.36 0.01 0.02 ${0.08}_{-0.07}^{+0.44}$ 0.21 ${7.1}_{-7.1}^{+610}\times {10}^{-4}$
080919 ≳6 Y 2.97 ± 0.68 0.1 0.07 ${0.019}_{-0.004}^{+0.005}$ 0.78 ${0.20}_{-0.07}^{+0.19}$
  ≳6 Y 2.97 ± 0.68 0.01 0.07 ${0.029}_{-0.006}^{+0.007}$ 0.70 ${5.1}_{-1.7}^{+4.5}$
081024A 0 N 2.40 ± 0.76 0.1 0.11 ${0.11}_{-0.07}^{+0.22}$ 0.51 ${8.1}_{-7.7}^{+150}\times {10}^{-5}$
  0 N 2.40 ± 0.76 0.01 0.11 ${0.25}_{-0.20}^{+0.92}$ 0.31 ${4.3}_{-4.2}^{260}\times {10}^{-4}$
081226A 1.0 N 2.27 ± 0.39 0.1 0.09 ${0.20}_{-0.13}^{+0.36}$ 0.32 ${3.2}_{-2.9}^{+29}\times {10}^{-5}$
  1.0 N 2.27 ± 0.39 0.01 0.09 ${0.43}_{-0.33}^{+1.5}$ 0.18 ${1.7}_{-1.6}^{+54}\times {10}^{-4}$
090426A 0 Y 2.13 ± 0.14 0.1 2.0 ${1.4}_{-0.3}^{+0.4}$ 0.59 ${0.04}_{-0.02}^{+0.04}$
  0 Y 2.13 ± 0.14 0.01 2.0 ${1.5}_{-0.3}^{+0.4}$ 0.57 ${1.2}_{-0.6}^{+1.4}$
090510 0 N 2.65 ± 0.08 0.1 0.77 ${0.77}_{-0.33}^{+0.57}$ 0.50 ${1.2}_{-1.0}^{+5.5}\times {10}^{-5}$
  0 N 2.65 ± 0.08 0.01 0.77 ${1.9}_{-1.2}^{+3.0}$ 0.29 ${6.4}_{-6.0}^{+100}\times {10}^{-5}$
090607 0 Y 2.40 ± 0.76 0.1 0.10 ${2.1}_{-0.3}^{+0.4}\times {10}^{-3}$ 0.98 ${0.84}_{-0.22}^{+0.52}$
  0 Y 2.40 ± 0.76 0.01 0.10 ${2.6}_{-0.4}^{+0.5}\times {10}^{-3}$ 0.98 ${24}_{-6.3}^{+15}$
090621Bc 2.5 Y 2.64 ± 0.72 0.1 0.07 ${0.023}_{-0.006}^{+0.007}$ 0.75 ${0.05}_{-0.02}^{+0.06}$
  2.5 Y 2.64 ± 0.72 0.01 0.07 ${0.031}_{-0.007}^{+0.009}$ 0.68 ${1.0}_{-0.27}^{+0.52}$
091109B 0 N 2.40 ± 0.32 0.1 0.18 ${0.25}_{-0.16}^{+0.18}$ 0.42 ${2.8}_{-2.5}^{+24}\times {10}^{-5}$
  0 N 2.40 ± 0.32 0.01 0.18 ${0.8}_{-0.6}^{+2.2}$ 0.18 ${9.4}_{-9.0}^{200}\times {10}^{-5}$
100117A 0 Y 2.36 ± 0.30 0.1 0.22 ${0.019}_{-0.003}^{+0.003}$ 0.92 ${0.04}_{-0.01}^{+0.03}$
  0 Y 2.36 ± 0.30 0.01 0.22 ${0.023}_{-0.004}^{+0.004}$ 0.90 ${1.2}_{-0.3}^{+0.9}$
101219A ≳2.5 N 2.73 ± 0.13 0.1 0.74 ${0.3}_{-0.2}^{+0.5}$ 0.68 ${4.6}_{-4.3}^{+59}\times {10}^{-5}$
  ≳2.5 N 2.73 ± 0.13 0.01 0.74 ${0.87}_{-0.64}^{+2.3}$ 0.46 ${2.4}_{-2.3}^{+97}\times {10}^{-4}$
110112Ab 0 Y 2.49 ± 0.07 0.1 0.03 ${0.064}_{-0.005}^{+0.008}$ 0.31 ${2.4}_{-0.4}^{+0.4}\times {10}^{-2}$
111020Aa b c 0.5 Y 2.08 ± 0.32 0.1 0.17 ${0.48}_{-0.08}^{+0.09}$ 0.26 ${4.5}_{-3.8}^{+6.0}\times {10}^{-3}$
111117A 0 Y 2.27 ± 0.07 0.1 0.55 ${0.06}_{-0.01}^{+0.01}$ 0.90 ${8.3}_{-2.3}^{+5.9}\times {10}^{-3}$
  0 Y 2.27 ± 0.07 0.01 0.55 ${0.07}_{-0.01}^{+0.02}$ 0.89 ${0.25}_{-0.07}^{+0.16}$
111121A N/A N 2.87 ± 0.21 0.1 2.1 ${3.1}_{-1.2}^{+1.9}$ 0.40 ${8.2}_{-6.3}^{+27}\times {10}^{-6}$
  N/A N 2.87 ± 0.21 0.01 2.1 ${8.3}_{-4.8}^{+11.1}$ 0.20 ${4.2}_{-3.8}^{+48}\times {10}^{-5}$
120804Ac 2.5 Y 2.08 ± 0.11 0.1 3.4 ${1.1}_{-0.2}^{+0.3}$ 0.76 ${3.2}_{-1.5}^{+3.1}\times {10}^{-3}$
  2.5 Y 2.08 ± 0.11 0.01 3.4 ${2.3}_{-0.2}^{+0.2}$ 0.60 ${0.014}_{-0.001}^{+0.002}$
121226Aa b 1 Y 2.50 ± 0.37 0.1 0.37 ${0.6}_{-0.09}^{+0.08}$ 0.37 ${4.0}_{-0.6}^{+1.0}\times {10}^{-3}$
130603B 1.2 Y 2.70 ± 0.06 0.1 0.37 ${0.11}_{-0.01}^{+0.02}$ 0.77 ${0.09}_{-0.03}^{+0.04}$
  0.3 Y 2.70 ± 0.06 0.01 0.37 ${0.15}_{-0.02}^{+0.02}$ 0.72 ${0.31}_{-0.04}^{+0.08}$
130912Ac 1.3 N 2.49 ± 0.17 0.1 0.16 ${0.50}_{-0.20}^{+0.37}$ 0.25 ${1.7}_{-1.5}^{+9.9}\times {10}^{-5}$
  1.3 N 2.49 ± 0.17 0.01 0.16 ${1.4}_{-0.8}^{+0.2}$ 0.11 ${5.2}_{-4.9}^{+7.6}\times {10}^{-5}$
131004A 0 N 2.57 ± 0.48 0.1 0.45 ${1.2}_{-0.36}^{+0.56}$ 0.28 ${1.2}_{-1.0}^{+5.7}\times {10}^{-5}$
  0 N 2.57 ± 0.48 0.01 0.45 ${2.8}_{-1.5}^{+3.4}$ 0.45 ${6.5}_{-6.2}^{+11}\times {10}^{-4}$
140129B 0 N 3.00 ± 0.19 0.1 0.07 ${0.98}_{-0.53}^{+1.14}$ 0.06 ${3.1}_{-2.8}^{+29.4}\times {10}^{-5}$
  0 N 3.00 ± 0.19 0.01 0.07 ${3.8}_{-2.9}^{+12.0}$ 0.02 ${1.6}_{-1.5}^{+47}\times {10}^{-4}$
140516A 0 N 2.40 ± 0.88 0.1 0.02 ${0.02}_{-0.01}^{+0.04}$ 0.54 ${1.0}_{-0.99}^{+24}\times {10}^{-4}$
  0 N 2.40 ± 0.88 0.01 0.02 ${0.04}_{-0.03}^{+0.18}$ 0.34 ${5.5}_{-5.4}^{+41}\times {10}^{-4}$
140622A 0 N 2.10 ± 0.60 0.1 0.07 ${0.12}_{-0.08}^{+0.26}$ 0.36 ${5.8}_{-5.4}^{+8.8}\times {10}^{-5}$
  0 N 2.10 ± 0.60 0.01 0.07 ${0.25}_{-0.20}^{+0.97}$ 0.21 ${3.2}_{-3.2}^{+16.2}\times {10}^{-4}$
140903A 0 N 2.27 ± 0.16 10−3 0.08 ${2.9}_{-0.74}^{+0.92}$ 0.03 ${3.4}_{-1.6}^{+2.9}\times {10}^{-3}$
140930B 0 N 2.67 ± 0.19 0.1 0.40 ${0.28}_{-0.17}^{+0.42}$ 0.58 ${4.6}_{-4.3}^{+58}\times {10}^{-5}$
  0 N 2.67 ± 0.19 0.01 0.40 ${1.8}_{-0.9}^{+1.7}$ 0.18 ${1.8}_{-1.5}^{11}\times {10}^{-5}$
150101Bc 0.5 N 2.40 ± 0.17 0.1 4.0 $\;\times \;{10}^{-3}$ ${0.61}_{-0.25}^{+0.45}$ 6.6 $\;\times \;{10}^{-3}$ ${8.0}_{-6.1}^{+24}\times {10}^{-6}$
  0.5 N 2.40 ± 0.17 0.1 4.0 $\;\times \;{10}^{-3}$ ${3.0}_{-1.1}^{+1.7}$ 1.3 $\;\times \;{10}^{-3}$ ${5.3}_{-3.6}^{+11}\times {10}^{-6}$

Notes. Quoted uncertainties are 1σ. All solutions presented here are for a fixed epsilone = 0.1 and assume a lower density bound of nmin = 10−6 cm−3.

aWe assume a redshift of z = 1 for this burst. bNo valid solution is found for epsilonB = 0.01. cValue of ${A}_{V}^{{\rm{host}}}$ is determined from a comparison of the optical and X-ray bands, and not directly from the optical/NIR SED. dDetermined from αX alone.

Download table as:  ASCIITypeset images: 1 2

For bursts where we do not have enough information from the optical/NIR bands alone to constrain the spectral behavior of the afterglow, we initially assume that there is no rest-frame extinction, ${A}_{V}^{{\rm{host}}}=0.$ However, in eight cases, the difference in slope between the X-ray and optical bands is shallower than expected (e.g., $| {\beta }_{\mathrm{OX}}| \lesssim | {\beta }_{{\rm{X}}}| -0.5,$ where βOX is the spectral index between the X-ray and optical bands), suggesting that either there is intrinsic extinction, or that the X-rays do not originate from the forward shock. Assuming the former explanation, we include the minimum amount of extinction required until the X-ray and optical solutions agree to within the 1σ uncertainties. In two cases, GRBs 080919 and 101219A, there is only an upper limit on the optical afterglow brightness; thus we can only determine a lower limit on the rest-frame extinction. We note that GRB 080919 has the highest value of rest-frame extinction, with ${A}_{V}^{{\rm{host}}}\gtrsim 6$ mag. However, this burst has a sightline close to the Galactic plane and therefore has a highly uncertain Galactic extinction, which likely affects the inferred value for ${A}_{V}^{{\rm{host}}}.$ For the 12 events with rest-frame extinction, we find values of ${A}_{V}^{{\rm{host}}}$ ≈ 0.3–1.5 mag. These ${A}_{V}^{{\rm{host}}}$ values are also listed in Table 3.

3.2. Determination of Electron Power Law Index and the Location of the Cooling Frequency

To determine the electron power law index p, we use αX and βX to constrain the location of the cooling frequency, νc, with respect to the X-ray band. We use the relations given by Granot & Sari (2002) which relate αX and βX to the value of p for the scenarios ${\nu }_{{\rm{m}}}\lt {\nu }_{{\rm{X}}}\lt {\nu }_{{\rm{c}}}$ and νc < νX by

Equation (2)

Equation (3)

For a given burst, we calculate the values of p and 1σ uncertainties using Equations (2) and (3) and standard propagation of errors. We select the valid scenario under the condition that the values of p independently determined from αX and βX for a given scenario agree within the 1σ uncertainties. Following this condition, we can constrain the location of νc with respect to the X-ray band for 38 bursts (Table 3). Using Equations (2) and (3), we calculate the weighted mean for the value of p in the valid scenario; the resulting values and uncertainties are listed in Table 3 and displayed in Figure 2. We note that in the case of GRB 071227, the condition is satisfied for νc < νX, but has a median of p = 1.92 ± 0.31, which yields a divergent total integrated energy. Thus for this burst, we employ p = 2.05 in our subsequent analysis (Table 3).

Figure 2.

Figure 2. Histogram of electron power law index, p, for 38 short GRBs as inferred from the X-ray temporal and spectral indices. The weighted mean and 1σ uncertainties for the population (blue arrow) is $\langle p\rangle ={2.43}_{-0.28}^{+0.36}.$ These values correspond to those listed in Table 3.

Standard image High-resolution image

Under the reasonable assumption that the optical band lies between the peak frequency, νm, and the cooling frequency, νc (i.e., νm < νopt < νc), we use the available values for αopt and βopt and Equation (2) to independently determine the value of p. We then include this in our weighted average of p for each burst (Figure 2). The weighted mean for the sample of 38 bursts is $\left\langle p\right\rangle ={2.43}_{-0.28}^{+0.36}$ (1σ; Figure 2).

For the remaining bursts in the afterglow catalog, there is not enough information to determine the location of the cooling frequency with respect to the X-ray band, and therefore the correct value of p. We thus concentrate on the subset of 38 bursts with determined values of p for our subsequent analysis. We find νc < νX for 18 cases, while νc > νX for 20 cases.

3.3. The Isotropic-equivalent Kinetic Energies and Densities for Individual Bursts

In the standard synchrotron model from Granot & Sari (2002), the dependencies on the isotropic-equivalent kinetic energy, circumburst density, and the microphysical parameters are as follows for a given flux density, Fν,i and observing band, νi:

Equation (4)

where n0 is in units of cm−3, EK,iso,52 is in units of 1052 erg, and epsilone,−1 and epsilonB,−1 are in units of 0.1. In addition to these four parameters, Fν,i is also dependent on the redshift, luminosity distance, νi, time after the burst, δt, and the value of p; the exact dependencies are provided in Granot & Sari (2002). We note that for νi > νc, the flux density is independent of circumburst density. For bursts with no spectroscopic redshift, we assume z = 0.5. In all cases, we cannot independently constrain epsilone and epsilonB since this requires knowledge of the locations of the three break frequencies (νa, νm, and νc), which generally necessitates well-sampled light curves and spectra in multiple bands. Thus, in order to determine ranges for EK,iso and n, we fix the values of the microphysical parameters. We first consider the fiducial case that epsilone = 0.1 and epsilonB = 0.1.

For each burst, we determine the constraints on EK,iso and n by computing individual probability distributions for each observation. We then assign the probabilities to a grid of values, and use a joint probability analysis to calculate the distributions in each parameter. For the grid, the ranges of the density and isotropic-equivalent kinetic energy are ni = 10−6–103 cm−3 and Ei = 1046–1054 erg, with 1000 logarithmically, uniformly spaced steps in each parameter. We choose the lower bound of the density range, nmin = 10−6 cm−3 to match the typical density of the intergalactic medium (IGM).

3.3.1. Detections

To calculate the individual probability distributions for afterglow detections, we apply Equation (4) to the observations using the relevant regime for each observing band, νi. For the X-ray band, we use the location of νc as determined in Section 3.1.1 to determine which branch of Equation (4) to use. Since the value of p is primarily determined from the X-ray band, the ${E}_{{\rm{K,iso}}}\mbox{--}n$ relation remains unchanged when using different X-ray observations that follow the same temporal decline; thus, we only use one X-ray observation per burst. For the optical band, we make the reasonable assumption that ${\nu }_{{\rm{m}}}\lt {\nu }_{{\rm{opt}}}\lt {\nu }_{{\rm{c}}}$ and utilize the second branch of Equation (4). In some cases, individual optical/NIR observations lead to ${E}_{{\rm{K,}}\;{\rm{iso}}}\mbox{--}n$ relations that do not overlap within their 1σ uncertainties. In these cases, we use the weighted mean and standard deviation of these relations (i.e., systematic uncertainty) as the optical/NIR solution. For the radio band, we assume that ${\nu }_{a}\lt {\nu }_{{\rm{radio}}}\lt {\nu }_{{\rm{m}}},$ (first branch of Equation (4)) to calculate the ${E}_{{\rm{K,iso}}}\mbox{--}n$ relations. Since the radio band lies on a different segment of the synchrotron spectrum than the other bands, it contributes a ${E}_{{\rm{K,iso}}}\mbox{--}n$ relation with a different slope, and thus enables tighter constraints on the physical parameters (Figure 3).

Figure 3.

Figure 3. Isotropic-equivalent kinetic energy vs. circumburst density for four short GRBs with radio afterglow detections. In each panel, the X-rays (light blue), optical (orange), and radio (red) provide independent constraints on the parameter space. Measurements are shown as solid regions, where the width of the region corresponds to the 1σ uncertainty. Upper (lower) limits set by the cooling frequency are denoted by blue dotted (dash–dotted) lines. The regions of parameter space ruled out by the observations are denoted (gray hatched regions). The median solution and 1σ uncertainty is indicated by the black cross in each panel, corresponding to the values listed in Table 3. For each burst, the joint probability distributions in n (bottom panel) and EK,iso (right panel) are shown. Red lines correspond to the median, and dotted lines are the 1σ uncertainty about the median. The green line corresponds to Eγ,iso. The only optical observations available for GRB 050724A are during a flare; thus we do not include the optical data in our analysis. The addition of a detection in the radio band is crucial in constraining the best-fit solution, and in three cases constrains epsilonB.

Standard image High-resolution image

After calculating the unique probability distribution from each of the radio, optical/NIR and X-ray bands, we normalize the area under each of the distributions to unity. We assume that the uncertainties in the flux densities are Gaussian, and thus each band contributes a unique, log-normal distribution. These distributions are shown for the four bursts with radio afterglow detections (Figure 3), and 34 bursts with radio afterglow non-detections: 16 bursts with νc < νX (Figure 4) and 18 bursts with νc > νX (Figure 5).

Figure 4.

Figure 4. Isotropic-equivalent kinetic energy vs. circumburst density for 16 short GRBs with solutions for νc < νX assuming fiducial values for the microphysical parameters of epsilone = epsilonB = 0.1. In each panel, the X-rays (light blue), optical (orange), and radio (red) provide independent constraints on the parameter space. In particular, the X-ray band provides an estimate of EK,iso. Measurements are shown as solid regions, where the width of the region corresponds to the 1σ uncertainty, while upper limits are denoted as dashed lines. Setting the cooling frequency to a maximum value of νc,max = 7.2 × 1016 Hz (0.3 keV) provides an additional constraint (dark blue dotted–dashed line). The regions of parameter space ruled out by the observations are denoted (gray hatched regions). The median solution and 1σ uncertainty is indicated by the black cross in each panel, corresponding to the values listed in Table 3. For each burst, the joint probability distributions in n (bottom panel) and EK,iso (right panel) are shown. Red lines correspond to the median, and dotted lines are the 1σ uncertainty about the median. The green line corresponds to Eγ,iso.

Standard image High-resolution image
Figure 5.

Figure 5. Isotropic-equivalent kinetic energy vs. circumburst density for 18 short GRBs with solutions for νc > νX assuming fiducial values for the microphysical parameters of epsilone = epsilonB = 0.1. In each panel, the X-rays (light blue), optical (orange) and radio (red) provide independent constraints on the parameter space. Measurements are shown as solid regions, where the width of the region corresponds to the 1σ uncertainty, while upper limits are denoted as dashed lines. Setting the cooling frequency to a minimum value of νc,min = 2.4 × 1018 Hz (10 keV) provides an additional constraint (dark blue dashed line). The regions of parameter space ruled out by the observations are denoted (gray hatched regions). The median solution and 1σ uncertainty is indicated by the black cross in each panel, corresponding to the values listed in Table 3. For each burst, the joint probability distributions in n, with an imposed lower bound of nmin = 10−6 cm−3 (bottom panel), and EK,iso (right panel) are shown. Red lines correspond to the median, and dotted lines are the 1σ uncertainty about the median. The green line corresponds to Eγ,iso.

Standard image High-resolution image

3.3.2. Upper Limits

For flux density upper limits, we use Equation (4) to determine the ${E}_{{\rm{K,iso}}}\mbox{--}n$ relation at the 3σ upper limit. We then assign zero probability to the ${E}_{{\rm{K,iso}}}\mbox{--}n$ parameter space above the relationship, and assign a constant probability to the allowed parameter space below the relationship, normalized to unity. The upper limits are denoted by dashed lines in Figures 35, where the colors of the lines correspond to the relevant observing band (X-rays: blue, optical: orange, radio: red). Regions of parameter space that have been ruled out by the upper limits are marked as hatched regions.

3.3.3. Cooling Frequency Constraint

We utilize the relative location of the cooling frequency as a final constraint, since it depends on a combination of energy and density, by

Equation (5)

with additional dependencies on δt and redshift (Granot & Sari 2002). For the cases in which the X-ray band is located above the cooling frequency (νc < νX), we employ a maximum value at the lower edge of the X-ray band, νc,max = 7.3 × 1016 Hz (0.3 keV), to obtain a lower limit on the combination of energy and density. The corresponding probability distribution has zero value in the ${E}_{{\rm{K,iso}}}\mbox{--}n$ parameter space below the relation, and a constant value above the relation, where the area in the allowed parameter space is normalized to unity. The lower limits are shown as as blue dotted–dashed lines for GRBs 051221A and 130603B in Figure 3 and for all bursts in Figure 4. In cases where the X-ray band is below the cooling frequency (${\nu }_{{\rm{m}}}\lt {\nu }_{{\rm{X}}}\lt {\nu }_{{\rm{c}}}$), we set the cooling break to a minimum value, νc,min = 2.4 × 1018 Hz (10 keV) at the upper edge of the X-ray band, and determine the ${E}_{{\rm{K,iso}}}\mbox{--}n$ relation for each burst using Equation (5). This constraint sets an upper limit on the combination of energy and density. We form the probability distribution in the same manner as for afterglow upper limits. The limits for each burst set by the cooling frequency are shown as blue dashed lines for GRBs 050724A and 140903A in Figure 3 and all bursts in Figure 5.

3.4. Joint Probability Distributions

Since each of the observing bands, as well as the location of the cooling frequency, contribute an independent probability distribution, we calculate the joint probability from a product of these distributions for each burst. To obtain one-dimensional probability distributions in EK,iso and n, we integrate over each of the parameters. Finally, we normalize the area under each one-dimensional distribution to unity. The resulting distributions, P(n) and P(EK,iso), for 34 bursts are shown in Figures 45 for the fiducial microphysical parameters, epsilone = epsilonB = 0.1. The median values and 1σ uncertainties in isotropic-equivalent kinetic energy and circumburst density are also shown in these figures and listed in Table 3.

Figure 3 shows the probability distributions for the four events with radio afterglow detections. In three of the four cases, we can use the available data to place additional constraints on epsilonB, fixing epsilone = 0.1. For GRBs 050724A and 140903A, the afterglow data require that epsilonB ≲ 10−4 and ≲10−3, respectively. For larger values of epsilonB, the constraint from the cooling frequency becomes more stringent and conflicts with the solutions obtained from the afterglow observations on the grid of allowed values. For GRB 051221A, we find a significantly better fit at epsilonB = 0.01. In all cases, the addition of the radio band enables tighter constraints on both the energy and the density.

4. DENSITY AND ENERGY SCALE FOR SHORT GRBS

To quantify the distributions of circumburst densities and isotropic-equivalent kinetic energies for the entire sample, we calculate the combined probability distributions from the sum of the one-dimensional probability distributions, P(n) and P(EK,iso). We sum the individual distributions for all bursts with valid solutions at epsilonB = 0.1, as well as GRB 050724A (epsilonB = 10−4) and GRB 140903A (epsilonB = 10−3), to create cumulative probability distributions for both density and kinetic energy, shown in Figure 6.

Figure 6.

Figure 6. Combined and cumulative probability distributions in n and EK,iso assuming epsilone = epsilonB = 0.1 (top) and epsilone = 0.1, epsilonB = 0.01 (bottom). All scenarios also include GRBs 050724A and 140903A, with epsilonB = 10−4 and 10−3, respectively. Each panel shows three populations: all bursts with an imposed lower bound of nmin = 10−6 cm−3 (red), all bursts with an imposed lower bound of nmin = 10−4 cm−3 (black dotted–dashed), and the sub-sample of events with νc < νX (light gray dashed). Color-coded arrows from the bottom denote the median for each distribution (and in some cases, staggered for the sake of clarity), and lines denote 90% upper limits. For epsilonB = 0.1 (epsilonB = 0.01), the cumulative distributions indicate that for n ≳ 3 × 10−3 cm−3 (n ≳ 0.3 cm−3), the distributions are virtually independent of the choice of nmin provided that nmin ≲ 10−4 cm−3. This allows us to place robust 90% upper limits of n ≲ 0.5–1.0 cm−3 (n ≲ 3–23 cm−3) for our sample of bursts. In addition, ≈95% (≈80%) of the total probability for all events lies below densities of 1 cm−3. The range of median isotropic-equivalent kinetic energies for all scenarios is ≈(2–20) × 1051 erg (c.f., Table 4).

Standard image High-resolution image

The median values for the population of 38 bursts are $\langle n\rangle \approx 2.9\times {10}^{-3}$ cm−3 and $\langle {E}_{{\rm{K,iso}}}\rangle \approx 1.9\times {10}^{51}$ erg (Figure 6 and Table 4). The density which corresponds to 90% of the cumulative distribution (n90) is ≈0.4 cm−3, and the fraction of probability that lies at densities of ≲1 cm−3 (${f}_{n\lt 1\;{\mathrm{cm}}^{-3}}$) is 0.95 (Figure 6 and Table 4). We also calculate these statistics for the sub-sample of bursts with νc < νX, corresponding to the events in Figure 4, that utilize all three branches of Equation (4) and therefore have relatively well-constrained energies and densities (compared to the broader probability distributions for events with νc > νX; see Section 4.2.3). We find that this distribution has a median of $\langle n\rangle \approx 3.7\times {10}^{-2}$ cm−3, n90 ≈ 1.0 cm−3, and that ${f}_{n\lt 1\;{\mathrm{cm}}^{-3}}\approx 0.90.$ Furthermore, the median value for kinetic energy decreases by a factor of 2, to EK,iso ≈ 9.6 × 1050 erg. The cumulative distributions in density and energy are shown in Figure 6 and the population statistics are listed in Table 4.

Table 4.  Circumburst Density and Kinetic Energy Population Statistics

Scenario No. of Events $\langle n\rangle $ n90a ${f}_{n\lt 1\;{\mathrm{cm}}^{-3}}$ b $\langle {E}_{{\rm{K,iso}}}\rangle $
    (cm−3) (cm−3)   (erg)
epsilonB = 0.1
All bursts, nmin = 10−6 cm−3 38 2.9 × 10−3 0.40 0.95 1.9 × 1051
All bursts, nmin = 10−4 cm−3 37 3.7 × 10−3 0.49 0.95 1.2 × 1051
All bursts, nmin = 10−6 cm−3, νc = 1.7 keV 38 2.2 × 10−3 0.20 0.95 1.6 × 1051
Bursts with νc < νX 19 3.7 × 10−2 1.01 0.90 9.6 × 1050
epsilonB = 0.01
All bursts, ${n}_{{\rm{min}}}={10}^{-6}$ cm−3 33 5.2 × 10−3 2.7 0.79 2.9 × 1051
All bursts, nmin = 10−4 cm−3 32 1.4 × 10−2 3.1 0.78 1.7 × 1051
All bursts, nmin = 10−6 cm−3, νc = 1.7 keV 34 1.6 × 10−2 2.1 0.83 2.4 × 1051
Bursts with νc < νX 14 0.96 23.3 0.51 6.4 × 1050
epsilonB = 1 × 10−4
All bursts, nmin = 10−6 cm−3 22 3.0 × 10−2 771 0.68 1.8 × 1052

Notes. All scenarios include GRBs 050724A and 140903A, with epsilonB = 10−4 and 10−3, respectively.

aThis is the circumburst density which corresponds to 90% of the cumulative distribution. bThis is the fraction of the circumburst density cumulative distribution below a value of 1 cm−3.

Download table as:  ASCIITypeset image

4.1. Isotropic-Equivalent γ-ray Energy and Efficiency

We compare the inferred isotropic-equivalent kinetic energy to the γ-ray energy by computing the isotropic-equivalent γ-ray energy, Eγ,iso, to represent the energy range ≈1–104 keV (to match the widest energy ranges for current GRB detection satellites),

Equation (6)

where kbol is the bolometric correction factor to convert the fluence to an energy range of ≈1–104 keV, dL is the luminosity distance in cm, and fγ is the fluence in units of erg cm−2. For cases in which the fluence is calculated over the 15–150 keV Swift energy range, we use kbol = 5. If a burst is detected by other γ-ray satellites which cover a wider energy range of ≈10–1000 keV (e.g., Fermi, Konus-Wind, Suzaku), we utilize the measured fluences from these satellites and kbol = 1 to calculate the γ-ray energy. Individual values of Eγ,iso are shown in Figure 35 and listed in Table 3, while the distribution for 38 bursts is shown in Figure 7. We find that the range in isotropic-equivalent γ-ray energy is ≈(0.04–45) × 1051 erg, with a median value of $\langle {E}_{\gamma ,{\rm{iso}}}\rangle \approx 1.8\times {10}^{51}$ erg, similar to the ranges and median values of the isotropic-equivalent kinetic energy (Figure 7).

Figure 7.

Figure 7. Left: histograms of isotropic-equivalent γ-ray energy (red), and inferred isotropic-equivalent kinetic energies assuming epsilonB = 0.1 (dark gray, thick bars) and epsilonB = 0.01 (light gray, thin bars) for 38 short GRBs from broadband afterglow modeling. Median values for each population are denoted by the color-coded arrows from the top. Values for the isotropic-equivalent energies correspond to those listed in Table 3. Right: cumulative distributions of γ-ray efficiency (ηγ) assuming epsilonB = 0.1 (dark gray) and epsilonB = 0.01 (light gray), taking into account the 1σ uncertainties in ηγ for each burst. Median values are listed in the figure and denoted by the color-coded arrows from the bottom. Arrows are staggered for clarity.

Standard image High-resolution image

We also calculate the γ-ray efficiency,

Equation (7)

as well as the 1σ uncertainties in ηγ for each burst, following standard propagation of errors from the 1σ uncertainties in EK,iso. The resulting values of ηγ are listed in Table 3 and the cumulative distributions, after incorporating the 1σ uncertainties, are shown in Figure 7. We find a wide range in ηγ, ≈10−3 − 1, and note that the lower bound is set by the single outlier, GRB 150101B (Table 3). Excluding this burst, the lower bound is ≈0.03 (GRB 140622A).

The distribution for epsilonB = 0.1 has a median of $\langle {\eta }_{\gamma }\rangle ={0.56}_{-0.37}^{+0.36}$ (1σ uncertainties). The isotropic-equivalent kinetic energy scale for the epsilonB = 0.01 case is comparatively high (c.f., Figure 6), and thus the median value for the γ-ray efficiency is relatively low, $\langle {\eta }_{\gamma }\rangle ={0.40}_{-0.35}^{+0.49}$ (1σ uncertainties; Figure 7).

4.2. Alternative Cases

We have thus far made assumptions about the values of the microphysical parameters (epsilone = epsilonB = 0.1), the redshifts (z = 0.5 unless otherwise determined), the minimum allowed density (nmin = 10−6 cm−3), and the cooling frequency (0.3 keV for νc < νX; 10 keV for νc > νX). To explore the impact of these assumptions on our resulting distributions for the kinetic energy and circumburst density, we consider alternative values for these parameters.

4.2.1. The Value of epsilonB

In some cases, a valid solution using the fiducial input of epsilonB = 0.1 (with fixed epsilone = 0.1) cannot be found. For instance, three of the four bursts with radio afterglows require that epsilonB ≲ 0.1 (Figure 3 and Table 3). At a fixed value of epsilone = 0.1, epsilonB is constrained to ≲10−4 for GRB 050724A, ≲10−2 for GRB 051221A, and ≲5 × 10−3 for GRB 140903A (Figure 3). For the remaining bursts, we do not have enough information to rule out the epsilonB = 0.1 scenario. Thus, we consider two additional cases for all bursts: epsilonB = 0.01 and epsilonB = 10−4 (with fixed epsilone = 0.1). Of the 38 bursts in our sample, 33 have valid solutions for epsilonB = 0.01; the median and uncertainties in circumburst density and kinetic energy for each burst are listed in Table 3. To create cumulative probability distributions, we repeat the same exercise as described in Section 4 for the 33 events with valid solutions, displayed in Figure 6.

Using epsilonB = 10−4 as the fiducial value, the constraint from the cooling frequency conflicts with the solutions allowed by the afterglow observations in 16 cases, indicating that data do not allow such a low value of epsilonB for these bursts. The population statistics for the 22 bursts with valid solutions are listed in Table 4.

4.2.2. Redshift

For bursts with no determined spectroscopic redshift, we have assumed z = 0.5, set by the median of the short GRB population with known redshifts (Berger 2014). However, in three cases, GRBs 060313, 111020A, and 121226A, we do not find a valid joint solution at z = 0.5. We find that there are valid solutions at redshifts of z ≳ 1, and thus assume z = 1 for these bursts.

4.2.3. The Value of nmin

In the 20 cases in which the cooling frequency lies above the X-ray band (${\nu }_{{\rm{m}}}\lt {\nu }_{{\rm{X}}}\lt {\nu }_{{\rm{c}}}$), the X-ray and optical/NIR bands occupy the same spectral regime (branch 2 of Equation (4)) and the resulting ${E}_{{\rm{K,iso}}}\mbox{--}n$ relations have the same slope (Figures 3 and 5). Thus, the lower bound on the density is set by our minimum grid value of nmin = 10−6 cm−3; the density is otherwise unconstrained at the low end and results in broad probability distributions in both circumburst density and energy. To understand the impact of our choice of nmin on the resulting distributions, we repeat the individual probability analysis, employing a more stringent lower bound of nmin = 10−4 cm−3, at the low end of gas densities for the interstellar medium (ISM; Korpi et al. 1999; Murali 2000; Gent et al. 2013). Since kinetic energy and density are inversely related, the upper bound on EK,iso for each burst is naturally set by our choice of nmin. We consider this alternative value of nmin for epsilonB = 0.1 and epsilonB = 0.01.

4.2.4. The Value of νc

In all cases, we have assumed that the cooling frequency is on the edge of the X-ray band (0.3 keV for νc < νX; 10 keV for νc > νX). To test whether this assumption has any impact on our results, we repeat the individual and joint probability analysis assuming that the cooling frequency is at the logarithmic mean of the 0.3–10 keV Swift X-ray band, νc,mid = 4.1 × 1017 Hz (1.7 keV). We consider this alternative value of the cooling frequency for epsilonB = 0.1 and epsilonB = 0.01.

4.2.5. Trends

Taking these alternative values into account, we repeat the individual and joint probability analysis for each burst for nine different sets of input parameters in total. The population medians, as well as values for n90 and ${f}_{n\lt 1\;{\mathrm{cm}}^{-3}}$ are listed in Table 4. In addition, cumulative distributions for kinetic energy and circumburst density for varying values of epsilonB and nmin are shown in Figure 6.

Overall, we find that a change in epsilonB results in an increase in the circumburst density. For instance, assuming nmin = 10−6 cm−3 for all bursts, decreasing epsilonB by a factor of 10 to epsilonB = 0.01 results in an increase in the median density by a factor of ≈1.8. This trend becomes more drastic for other scenarios: when assuming nmin = 10−4 cm−3, the median density increases by a factor of ≈3.8, and when considering only the bursts with νc < νX, the factor of increase is ≈26. When comparing the values of n90 and ${f}_{n\lt 1\;{\mathrm{cm}}^{-3}},$ we also find overall trends commensurate with an increase in circumburst density. In particular, the factor of 10 decrease in epsilonB causes ${f}_{n\lt 1\;{\mathrm{cm}}^{-3}}$ to decrease by a larger factor, from ≈0.95 to ≈0.8 for all bursts. When considering only bursts with νc < νX, ${f}_{n\lt 1\;{\mathrm{cm}}^{-3}}$ decreases from ≈0.90 to ≈0.51. The effect of epsilonB on the median kinetic energy is less pronounced, with increases by factors of ≈1.5 in all cases except when considering only bursts with νc < νX; in this case, the median undergoes a slight decrease by a factor of ≈1.5 (Table 4). Overall, we find that a decrease from epsilonB = 0.1 to 0.01 results in higher median densities by factors of ≈2–25 depending on the considered scenario, and a uniform increase in the density cumulative distributions (Figure 6). When considering the more extreme input of epsilonB = 10−4 for all bursts, the median density and kinetic energy both increase by factors of ≈10, compared to the epsilonB = 0.1 case (Table 4).

We next investigate the effects of the values of nmin and νc on the parameter distributions. We find that at constant epsilonB, the upper ≈30%–50% of the density cumulative distributions are virtually independent of our choice of nmin, provided that nmin ≲ 10−4 cm−3 (Figure 6). Importantly, this also allows us to place robust 90% upper limits on the density that are largely unaffected by our choice of nmin: n90 ≈ 0.4–0.5 cm−3 for epsilonB = 0.1 and n90 ≈ 2.7–3.1 cm−3 for epsilonB = 0.01 (Table 4). We find that the choice of cooling frequency within the X-ray band has a minor effect on the circumburst density, either a ≈1.3 factor of decrease (epsilonB = 0.1) or a factor of ≈3 increase (epsilonB = 0.01), while the median kinetic energy only decreases by a factor of ≈1.2 in both cases (Table 4).

When considering all cases with less extreme values of epsilonB for all bursts, the median density range is (3–15) × 10−3 cm−3, with 90% upper limits of n90 ≈ 0.4–3 cm−3. Furthermore, ≈80%–95% of the probability is below ≈1 cm−3 regardless of the input parameters considered (Table 4). The median isotropic-equivalent kinetic energy ranges from ≈(1.2–2.9) × 1051 erg. Including more extreme scenarios like the subset of bursts with νc < νX and epsilonB = 10−4, the full median density range is ≈(3–1000) × 10−3 cm−3 and the median isotropic-equivalent kinetic energy range is ≈(0.6–20) × 1051 erg (Table 4).

5. DISCUSSION AND IMPLICATIONS

5.1. Afterglow Properties

The X-ray, optical, and radio afterglow catalogs (Tables 68) allow us to analyze the observational afterglow properties of short GRBs as a population. By fitting the afterglow light curves, we find a weighted mean pre-jet break decline rate of $\langle {\alpha }_{{\rm{X}}}\rangle \approx -1.07$ at δt ≳ 1000 s for bursts with measured temporal indices, similar to the pre-jet break declines measured from long GRB light curves (Nysewander et al. 2009; Racusin et al. 2009; Kann et al. 2010; Zaninoni et al. 2013), and slightly shallower than the value of αX ≈ −1.2 found for 11 short GRBs in an earlier study (Nysewander et al. 2009). We measure the optical decline rates and find the same weighted mean decline rate of $\langle {\alpha }_{{\rm{opt}}}\rangle \approx -1.07$ from 19 well-sampled bursts with measured indices.

From spectral fitting of the optical, near-IR, and X-ray data, we find 12 short GRBs which require rest-frame extinction, with measured values of ${A}_{V}^{{\rm{host}}}$ ≈ 0.3–1.5 mag, and two bursts with lower limits of ${A}_{V}^{{\rm{host}}}$ ≳ 2.5–6 mag (Table 3). We note that GRB 080919 has the highest value of rest-frame extinction; however, the sightline to this burst is close to the Galactic plane and therefore has a highly uncertain Galactic extinction which likely affects the measurement of ${A}_{V}^{{\rm{host}}}.$ Prior to this study, evidence for ≳0.5 mag of extinction has only been reported in three short GRBs: GRB 070724A (Berger et al. 2009; Kocevski et al. 2010), GRB 111020A (Fong et al. 2012b), and GRB 120804A (Berger et al. 2013). Afterglow modeling in this work results in the same conclusions for those three events, and includes nine additional events with rest-frame extinction. We note that most of the events with non-zero extinction and robust host associations are in star-forming host galaxies; the single exception is GRB 150101B which has an inferred value of ${A}_{V}^{{\rm{host}}}\approx 0.5$ mag and is located on the outskirts of an early-type galaxy (Fong et al., in prep). In comparison, ≈15%–20% of Swift long GRBs have optically sub-luminous afterglows that have been attributed to dust extinction. For long GRBs, inferred values of ${A}_{V}^{{\rm{host}}}\approx 0.5$ mag are common, with a substantial fraction of events with ${A}_{V}^{{\rm{host}}}$ ≳ 1–2.5 mag (Cenko et al. 2009; Perley et al. 2009a, 2013).

While rest-frame extinction can be explained by dust in star-forming regions in the local environments of long GRBs, substantial extinction in short GRBs cannot be easily explained in the context of the double compact object merger progenitor. It is possible that these events are "impostors" which in actuality have massive star progenitors; in that case, we might expect them to be distinct in their γ-ray properties with longer durations and softer γ-ray spectra. However, there does not appear to be a correlation between short GRBs with extinction and their durations as they span the full range, with T90 ≈ 0.02–2 s, and only three events with non-zero extinction have T90 ≳ 1 s (GRBs 060121, 070714B, and 121226A). Furthermore, a study conducted by Bromberg et al. (2013) assigned six of these events probabilities of having non-collapsar progenitors based on their γ-ray properties. According to this study, 4/6 events have ≳60% probabilities that they do not originate from collapsars. Thus, it is unlikely that the majority of these events are in fact "impostors." Instead, this suggests that some short GRBs may originate in star-forming regions, or have progenitor systems that can produce dust.

5.2. Opening Angles

Most well-sampled short GRBs exhibit a single afterglow decline rate in the X-ray (at δt ≳ 1000 sec) and optical bands. However, there are four short GRBs (GRBs 051221A, 090426A, 111020A, and 130603B) which have temporal steepenings on timescales of δt ≈ 2–5 days, attributed to jet breaks (Table 5; Soderberg et al. 2006; Nicuesa Guelbenzu et al. 2011; Fong et al. 2012b, 2014). Jet breaks are achromatic features, and in principle can be detected in the X-ray through radio bands. The measurement of jet break time, in conjunction with the energy, density, and redshift, can be converted to a jet opening angle, θj, using (Sari et al. 1999; Frail et al. 2001)

Equation (8)

where tj,d is in days. The opening angle measurements for the four short GRBs with jet break detections are listed in Table 5. Using these four short GRB opening angle measurements alone, taking into account the published range of angles for individual bursts, the median is $\langle {\theta }_{j}\rangle =6^\circ \pm 1^\circ $ (Figure 8).

Figure 8.

Figure 8. Cumulative histograms of 11 short GRBs (dark red dash–dotted) and 265 long GRBs (dark blue) with opening angle measurements or limits, assuming a maximum opening angle of θj,max = 90°. Also shown is the distribution for 11 short GRBs assuming a more realistic maximum opening angle of θj,max = 30° (red). The distributions for the subset of 4 short GRBs (light red dotted) and 248 long GRBs (light blue) with opening angle measurements are also shown. Medians are denoted by color-coded arrows, and listed with their 1σ uncertainties in units of degrees.

Standard image High-resolution image

Table 5.  Short GRB Opening Angles

GRB Banda θj δtlastb Reference
    (deg) (days)  
050709 O ≳15° 16.2 (1)
050724A X ≳25° 22.0 (2)
051221A X 6°–7° 26.6 (3)
090426A O 5°–7° 2.7 (4)
101219A X ≳4° 3.9 (5), This work
111020A X 3°–8° 10.2 (6)
111117A X ≳3°–10° 3.0 (7), (8)
120804A X ≳13° 45.9 9, This work
130603B OR 4°–8° 6.5 (10)
140903A X ≳6° 3.0 11, This work
140930B X ≳9° 23.1 This work

Notes. Bursts with opening angle measurements are in bold.

aThis indicates the band in which the jet break was detected or the lower limit was placed. X = X-ray, O = optical, R = radio. A range of angles is due to uncertainty in the redshift, kinetic energy or circumburst density. bThis is the time elapsed between burst detection and the last observation.

References. (1) Fox et al. (2005), (2) Grupe et al. (2006), (3) Soderberg et al. (2006), (4) Nicuesa Guelbenzu et al. (2011), (5) Fong et al. (2013), (6) Fong et al. (2012b), (7) Margutti et al. (2012), (8) Sakamoto et al. (2013), (9) Berger et al. (2013), (10) Fong et al. (2014), (11) Evans et al. (2009).

Download table as:  ASCIITypeset image

However, the majority of short GRBs do not have detected jet breaks and instead exhibit a single power-law decline as long as they are detected. In these cases, the time of the last observation (δtlast) can be used to place lower limits on the opening angles. The inclusion of these bursts is essential in understanding the true opening angle distribution. In most cases, Swift/XRT observes short GRBs until they fade below the detection threshhold at δt ≲ 1 day, and enables relatively shallow lower limits of θj ≳ 2°–5° (Coward et al. 2012; Fong et al. 2012b). The inclusion of such limits will not have a significant effect on the opening angle distribution, as they virtually span the entire range of allowable angles.

Therefore, in order to have a more complete understanding of the opening angle distribution, we collect all existing published lower limits of θj ≳ 5°, and calculate lower limits for GRBs 101219A, 120804A, 140903A, and 140903B using the observations and physical parameters presented in this work. The inferred lower limits, the band in which the jet break was detected, and the value of δtlast used to compute the limits, are listed in Table 5. These seven events demonstrate that multi-wavelength afterglow observations to δtlast ≈ 3–25 days enable more meaningful lower limits on the opening angles of ≳5°–25° (Table 5).

To calculate the opening angle distribution, we give each of the 11 events equal weighting, where measurements are given Gaussian probability distributions to represent their allowed range of angles (Table 5), while lower limits are given probability that is evenly distributed between the lower limit and the maximum possible opening angle, θj,max = 90°. The resulting cumulative distribution for 11 short GRBs, including measurements and lower limits, is shown in Figure 8. Assuming an upper bound of θj,max = 90°, the short GRB population median is $\langle {\theta }_{j}\rangle ={33}_{-27}^{+38}$ deg (1σ). Motivated by simulations of post-merger black hole accretion predict jets with θj ∼ 5°–30° (Ruffert & Janka 1999b; Rosswog & Ramirez-Ruiz 2003; Aloy et al. 2005; Rosswog 2005; Rezzolla et al. 2011), we also calculate the cumulative distribution employing a more realistic maximum value of θj,max = 30°, and find a median of $\langle {\theta }_{j}\rangle =16\pm 10$ deg (1σ).

To compare these distributions to those for long GRBs, we collect opening angle measurements for 265 long GRBs, including 17 events with limits (Frail et al. 2001; Berger et al. 2003; Bloom et al. 2003; Ghirlanda et al. 2004; Friedman & Bloom 2005; Racusin et al. 2009; Cenko et al. 2010, 2011; Filgas et al. 2011; Goldstein et al. 2011; Ryan et al. 2015) and calculate the cumulative distributions in the same manner (Figure 8). We find a median value for the 248 long GRBs with measurements of $\langle {\theta }_{{\rm{j}}}\rangle ={13}_{-9}^{+5}$ deg. Including the 17 events with limits (θj,max = 90°), the median becomes ${14}_{-10}^{+9}$ deg.

The opening angle distribution of short GRBs impacts the true energy scale, as the true energy is lower than the isotropic-equivalent value by the beaming factor, fb, where ${f}_{b}\equiv 1-{\rm{cos}}({\theta }_{j})$ and therefore Etrue = fbEiso. To calculate the cumulative beaming factor distribution, we use the individual opening angle probability distributions for each burst to convert to individual distributions in beaming factor. We then sum the individual distributions in a cumulative sense and calculate the median and 1σ uncertainties about the median. Including all short GRBs with opening angle measurements and limits and assuming the more realistic scenario of θj,max = 30°, the median beaming factor is ${f}_{b}={0.04}_{-0.03}^{+0.07}.$ The beaming correction is less substantial if we assume θj,max = 90°, ${f}_{b}={0.17}_{-0.16}^{+0.52},$ and is much more substantial if we only include short GRBs with measurements, fb = 0.005 ± 0.002.

We find median isotropic-equivalent γ-ray and kinetic energy scales of Eγ,iso ≈ 2 × 1051 erg and EK,iso ≈ (1–3) × 1051 erg. Applying the beaming correction for the most realistic scenario gives median beaming-corrected γ-ray and kinetic energy scales of $\langle {E}_{\gamma }\rangle ={0.8}_{-0.6}^{+1.4}\times {10}^{50}$ erg and $\langle {E}_{K}\rangle ={0.8}_{-0.7}^{+2.5}\times {10}^{50}$ erg, resulting in a total beaming-corrected energy release of $\langle {E}_{{\rm{tot}}}\rangle ={1.6}_{-1.3}^{+3.9}\times {10}^{50}$ erg. The inferred energy scales can be used to constrain the mechanism of energy extraction to power the relativistic jet: the thermal energy release from $\nu \bar{\nu }$ annihilation in a baryonic outflow (Jaroszynski 1993; Mochkovitch et al. 1993) and magnetohydrodynamic (MHD) processes in the black hole's accretion remnant (e.g., Blandford & Znajek 1977; Rosswog et al. 2003). The general consensus is that $\nu \bar{\nu }$ annihilation can only produce beaming-corrected total energy releases of 1048–1049 erg, while MHD processes can more easily produce energy releases in excess of 1049 erg (Popham et al. 1999; Ruffert & Janka 1999a, 1999b; Rosswog 2005; Birkl et al. 2007; Lee & Ramirez-Ruiz 2007). Thus, if the majority of short GRBs have wider opening angles than the four short GRBs with measurements, and thus have a smaller overall correction to the isotropic-equivalent energy scale, it will be necessary to invoke MHD processes to explain the observed energy releases.

The opening angles also impact the event rate, as the true event rate is elevated compared to the observed rate by a factor of ${f}_{b}^{-1},$ so ${{\mathfrak{R}}}_{{\rm{true}}}={f}_{b}^{-1}{{\mathfrak{R}}}_{{\rm{obs}}}.$ The current estimated observed short GRB volumetric rate is ${{\mathfrak{R}}}_{{\rm{obs}}}\approx 10$ Gpc−3 yr−1 (Nakar et al. 2006). Using ${f}_{b}^{-1}={27}_{-18}^{+158},$ which corresponds to all short GRBs with opening angle measurements and limits (θj,max = 30°), we find a true event rate of ${{\mathfrak{R}}}_{{\rm{true}}}\approx {270}_{-180}^{+1580}$ Gpc−3 yr−1. The observed all-sky event rate of ≈0.3 yr−1 within 200 Mpc (Guetta & Piran 2005) then becomes ${8}_{-5}^{+47}$ yr−1. We note that this rate is conservative compared to previously reported rates based on short GRB observations (Coward et al. 2012; Fong et al. 2012b, 2014), as it properly incorporates opening angle lower limits, with the only assumption of an upper bound on the opening angle of 30°. This range is fully consistent with the expected detection rates of neutron star mergers within a volume of 200 Mpc by Advanced LIGO/VIRGO of ≈0.2–200 yr−1 (LIGO Scientific Collaboration et al. 2013). Since there are a limited number of short GRBs with meaningful information on the opening angles, any additional measurements will greatly help to elucidate the true opening angle distribution, and therefore true energy scale and event rate.

5.3. Connection to Galactic Environments

We connect the afterglow properties of short GRBs to their larger-scale, galactic environments. In particular, we investigate trends between the circumburst densities, which probe the explosion environment on sub-parsec-scales, to the predicted distributions for NS–NS mergers, host galaxy type, and locations within the host galaxies.

We find a wide range of inferred circumburst densities for the 38 bursts that we have studied in detail, and can compare the properties of the sub-parsec-scale environment with the global host galaxy environment. Separating the bursts by host galaxy type according to Fong et al. (2013) and additional data collected since, we find that bursts in both star-forming and elliptical host galaxies span a wide range of densities, 10−6–5 cm−3 (Figure 9). We compare the inferred densities to predictions for NS–NS mergers from population synthesis for varying Galactic potentials, which have input distributions for merger timescales and kick velocities (Belczynski et al. 2006). Considering only the four bursts with elliptical hosts, we find particularly good agreement with the distributions for the large elliptical galaxy model (M* = 1011M, Mhalo = 1012M) which has probability peaks at 10−5 and 1 cm−3, and poor agreement with the small elliptical galaxy model (M* = 108 M), which is dominated by very low densities of ≲10−6 cm−3 (Belczynski et al. 2006). This conclusion is commensurate with the known stellar masses of short GRB elliptical hosts, which have a median of ${M}_{*}\approx {10}^{11.0}\;{M}_{\odot }$ (Leibler & Berger 2010; Berger 2014). There are no predicted density distributions for star-forming galaxies; however, we would expect short GRBs which originate in elliptical galaxies to have lower inferred densities due to the lower average ISM densities in elliptical galaxies (e.g., Fukazawa et al. 2006). Based on the small number of events, we do not find any significant difference between the inferred circumburst densities of short GRBs in star-forming versus elliptical hosts.

Figure 9.

Figure 9. Top: projected physical offset, δR, vs. circumburst density for 22 short GRBs with inferred circumburst densities and sub-arcsecond localization allowing for precise offset measurements. The sample is separated by host galaxy type: star-forming hosts (blue asterisks) and elliptical hosts with no signs of star formation (red squares) according to Fong et al. (2013). For bursts with no spectroscopic redshift, we assume z = 0.5 to calculate the physical offset, except in two cases, GRBs 060313 and 111020A, where we have assumed z = 1 as suggested by the afterglow modeling. Middle: host-normalized offset, δR/re, vs. circumburst density for 16 bursts with measured host galaxy sizes. Physical and host-normalized offsets are from Fong et al. (2010), Margutti et al. (2012), Berger et al. (2013), Fong & Berger (2013), Sakamoto et al. (2013), and this work. Error bars correspond to 1σ confidence. Bottom: histogram of inferred median circumburst densities for 22 short GRBs with physical offsets.

Standard image High-resolution image

We next investigate the relationship between the inferred circumburst densities and burst offsets from their host galaxies. If short GRBs trace the large-scale distribution of the ISM, we expect the inferred circumburst densities to decrease as a function of offset. In this vein, we gather all available projected physical offsets, δR, between the afterglow location and host galaxy center, derived from ground-based (Margutti et al. 2012; Berger et al. 2013; Sakamoto et al. 2013) and Hubble Space Telescope (HST) observations (Fong et al. 2010; Fong & Berger 2013). For bursts with no spectroscopic redshift, we calculate the physical offsets at z = 0.5 to be consistent with this work. However, for GRBs 060313 and 111020A, afterglow modeling implies that z > 0.5 (c.f. Section 3.3; Roming et al. 2006; Fong et al. 2012b) so we keep the original fiducial value of z = 1 for these bursts for complete uniformity. The distribution of circumburst densities with respect to projected physical offset for 22 bursts is shown in Figure 9. We find that four bursts with δR ≳ 10 kpc have very low densities of ≲10−3 cm−3, while bursts with δR ≲ 10 kpc have a wider range of densities, spanning ≈6 orders of magnitude (Figure 9). Overall, we find that for δR ≈ 1–15 kpc, there is no obvious trend between circumburst density and projected physical offset. We also find no obvious trends when considering only bursts with relatively well-measured densities (νc < νX).

To analyze the relationship with offsets in a more uniform manner, we utilize offsets that have been normalized by the sizes of their host galaxies (δR/re where re is the galaxy half-light radius). The sample of bursts with host-normalized offsets is smaller since precise galaxy size measurements require the resolution of HST; thus the sample comprises 16 events (Fong et al. 2010; Fong & Berger 2013). The circumburst densities as a function of projected host-normalized offset is provided in Figure 9. Our analysis suggests that for ≲5 re, the inferred densities are largely independent of host-normalized offset. We discuss a couple of possible contributing factors. First, since we can only measure projected offsets, we are not sensitive to the distance component along our line of sight, which could contribute a significant amount to the absolute distance. This may explain the case of GRB 061006, which has a small projected offset ≈0.4re but has a very low density of ≈2 × 10−5 cm−3 (Table 3 and Figure 9). Second, the afterglow only probes the sub-parsec circumburst environment and to a certain extent will be more sensitive to small-scale fluctuations in the ISM rather than the average ISM density on kiloparsec scales.

However, bursts that appear to have no coincident host galaxy to deep optical/NIR limits of ≳26 mag and are located ≈30–75 kpc from the nearest most probable host galaxy ("host-less" bursts; Berger 2010; Fong & Berger 2013; Tunnicliffe et al. 2013) are expected to have low inferred densities. Indeed, the three bursts located at offsets of ≳10re have low densities of ≲10−4 cm−3, as expected if these bursts occur in the IGM or outer halos of their hosts.

6. CONCLUSIONS

We present the most comprehensive catalog of short GRB afterglows to date, representing a decade of observations since the launch of Swift in 2004. This catalog is comprised of 103 short GRBs with prompt X-ray, optical/NIR and radio follow-up, enabled by broadband Target-of-Opportunity programs. Applying the synchrotron afterglow model to the observations, we also place constraints on the isotropic-equivalent kinetic energies and circumburst densities for a subset of 38 events with well-sampled data sets. While a handful of short GRB afterglows have been studied in detail on an individual basis, our work presents the energy and density scales for a large population of events for the first time. We come to the following key conclusions.

  • 1.  
    The afterglow observations presented in this work include 71 X-ray detections, 30 optical/NIR detections, and 4 radio detections. The detection fractions are 91%, 40%, and 7%, respectively, after accounting for observing constraints. We present new optical/NIR observations for 11 events, and new radio observations for 25 bursts.
  • 2.  
    Applying a synchrotron model to the broadband afterglows of 38 bursts, we calculate the inferred circumburst density. Considering a range of scenarios with varying values for the microphysical parameters, cooling frequency, and minimum circumburst density, the median circumburst density is (3–15) × 10−3 cm−3, with 90% upper limits of n90 ≈ 0.4–3 cm−3. Furthermore, ≈80%–95% of the probability is below ≈1 cm−3. This indicates that overall short GRBs explode in low-density environments.
  • 3.  
    Depending on the set of assumptions in our analysis, we infer a median isotropic-equivalent kinetic energy of ≈(1–3) × 1051 erg (considering all scenarios), and an isotropic-equivalent γ-ray energy scale of ≈2 × 1051 erg. We find a median γ-ray efficiency of ≈0.40–0.56.
  • 4.  
    We find no obvious trends between circumburst density and host galaxy offset for projected offsets of ≲10 kpc (or ≲5 re), and no trend between density and host galaxy type, indicating that the circumburst density is not strongly dependent on the average ISM density. However, three bursts in our sample with offsets of ≳10 kpc have low densities of ≲10−4 cm−3, as expected if these bursts explode in the IGM.
  • 5.  
    Using 11 short GRBs with opening angle measurements and lower limits, and assuming a maximum value on the opening angle of 30°, we calculate a median jet opening angle of 16 ± 10 deg and a median beaming factor of ${0.04}_{-0.03}^{+0.07}.$ This results in a beaming-corrected total energy release of $\approx {1.6}_{-1.3}^{+3.9}\times {10}^{50}$ erg (1σ range), which is broadly consistent with the two primary proposed mechanisms of energy extraction, $\nu \bar{\nu }$ annihilation and MHD processes. The beaming-corrected volumetric rate is $\approx {270}_{-180}^{+1580}$ Gpc−3 yr−1 with an all-sky event rate within a volume of 200 Mpc of ${8}_{-5}^{+47}$ yr−1. This range is fully consistent with the expected detection rates of gravitational wave signals from neutron star mergers by Advanced LIGO/VIRGO within the same volume.

Our study highlights the importance of broadband observations in constraining the basic properties of short GRBs. For bursts with detected radio afterglows, we can start to constrain the microphysical parameters, which has thus far only been possible for long GRBs. While our study provides the isotropic-equivalent γ-ray and kinetic energy scales, the true energy release depends on the degree of jet collimation for short GRBs. Current knowledge of the collimation of short GRBs relies on only a handful of events with measured opening angles from their light curves, primarily due to the faintness of short GRB afterglows which prevent temporal monitoring on timescales longer than 1–2 days. Therefore, it is imperative to use the most sensitive ground- and space-based resources to uncover additional collimated events or place meaningful lower limits on the opening angles. It is especially important to undertake these studies while Swift is in operation, since this satellite has the unique capability of providing multi-wavelength light curves within minutes after the bursts.

The past decade of short GRB observations has enabled significant progress in understanding the basic properties of short GRBs, namely their energetics, circumburst densities, and opening angles. Furthermore, in addition to informing the behavior of on-axis afterglows, the circumburst density and energy are key parameters which feed in to predictions for electromagnetic counterparts to compact object mergers, such as off-axis afterglows (Granot et al. 2002; van Eerten et al. 2010) and long-lived radio flares from mildly relativistic ejecta (Nakar & Piran 2011). Advanced LIGO/VIRGO will detect NS–NS mergers within a horizon distance of ≈200 Mpc (LIGO Scientific Collaboration et al. 2013), making these alternative electromagnetic signatures promising for joint detection with gravitational waves. In a subsequent work, we will assess the detectability of such counterparts by using the distributions of circumburst densities and energies of on-axis short GRBs as inputs, which will help to inform search strategies in the upcoming revolutionary era of gravitational wave discovery.

We acknowledge Matthew Bayliss, Kathy Cooksey, Francesco Di Mille, Steven Elhert, Michael Florian, Tolga Guver, Traci Johnson, Dan Kelson, Michael McDonald, Andy Monson, David Osip, Benjamin Rackham, Nathan Sanders, Anil Seth, Meghin Spencer, Brian Stalder, Tony Stark, Rik Williams, and Amanda Zangari for their assistance in Magellan target-of-opportunity observations. Partial support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF4-150121 and Chandra Award Number G04-15055X, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. B.A.Z. acknowledges support from NSF grant AST-1302954, E.B. acknowledges partial support from NSF grant AST-1107973, and R.M. acknowledges support from the James Arthur Fellowship at NYU. Additional support was provided by several NASA/Swift grants. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. The scientific results reported in this article are in part based on observations made by the Chandra X-ray Observatory and data obtained from the Chandra Data Archive. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. Based on observations obtained at the Gemini Observatory acquired through the Gemini Science Archive and processed using the Gemini IRAF package which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), the Ministèrio da Ciência, Tecnologia e Inovação (Brazil), and the Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

APPENDIX: BROADBAND AFTERGLOW CATALOGS

Table 6.  Short GRB Late-time X-ray Afterglow Catalog

GRB δt Exposure Time FX σX References
  (s) (s) (μJy) (μJy)    
050509B 831 381 0.07 0.02 Gehrels et al. (2005)
  6.2 × 103 2.0 × 103 <0.02    
  e2.1 × 105 5.0 × 104 <8.0 × 10−3    
050709 1.4 × 105 1.5 × 104 1.9 × 10−3 1.4 × 10−4 Fox et al. (2005)
  2.1 × 105 5.0 × 103 <1.5 × 10−3
  e2.2 × 105 3.8 × 104 1.1 × 10−3 2.0 × 10−5
  2.8 × 105 6.4 × 103 <7.3 × 10−4
  3.7 × 105 2.1 × 103 <5.9 × 10−3
  e1.4 × 106 6.1 × 103 1.3 × 10−3 6.0 × 10−5
  e1.4 × 106 1.2 × 104 1.1 × 10−4 2.0 × 10−5
050724A 1.0 × 103 514 0.43 0.086 Grupe et al. (2006)
  1.4 × 103 323 0.68 0.14
  1.9 × 103 493 0.44 0.090
  6.6 × 103 2.0 × 103 0.091 0.022
  1.3 × 104 3.4 × 103 0.050 0.013
  2.5 × 104 1.9 × 103 0.10 0.023
  3.5 × 104 805 0.27 0.056
  3.7 × 104 1.2 × 103 0.19 0.039
  4.1 × 104 830 0.26 0.053
  4.2 × 104 652 0.32 0.068
  4.2 × 104 772 0.27 0.057
  4.7 × 104 1.2 × 103 0.18 0.038
  4.8 × 104 880 0.24 0.050
  4.8 × 104 790 0.27 0.056
  5.2 × 104 587 0.37 0.075
  5.3 × 104 800 0.27 0.055
  5.8 × 104 759 0.29 0.058
  5.9 × 104 554 0.39 0.080
  6.3 × 104 972 0.22 0.046
  6.6 × 104 1.0 × 103 0.20 0.044
  7.7 × 104 1.6 × 103 0.11 0.027
  8.8 × 104 2.0 × 103 0.10 0.023
  9.9 × 104 1.2 × 103 0.090 0.028
  1.4 × 105 4.4 × 103 0.025 8.4 × 10−3
  1.5 × 105 4.0 × 103 0.027 9.5 × 10−3
  1.8 × 105 7.0 × 103 0.012 5.5 × 10−3
  2.2 × 105 2.1 × 103 0.014 8.4 × 10−3
  5.6 × 105 4.7 × 104 1.4 × 10−3 7.8 × 10−4
  e2.1 × 105 8.3 × 103 6.0 × 10−3 1.1 × 10−3
  e2.1 × 105 9.6 × 103 5.1 × 10−3 9.7 × 10−4
  e2.3 × 105 1.2 × 104 3.9 × 10−3 7.5 × 10−4
  e2.4 × 105 1.3 × 104 3.8 × 10−3 7.2 × 10−4
  e2.5 × 105 6.5 × 103 5.4 × 10−3 1.2 × 10−3
  e1.9 × 106 4.3 × 104 3.3 × 10−4 1.2 × 10−4
050813 4.7 $\;\times \;{10}^{3}$ 2.7 $\;\times \;{10}^{5}$ 3.4 $\;\times \;{10}^{-3}$ 1.0 $\;\times \;{10}^{-3}$ Evans et al. (2007a, 2009)
  6.5 $\;\times \;{10}^{5}$ 3.4 $\;\times \;{10}^{5}$ <2.7 $\;\times \;{10}^{-3}$
050906 3.0 $\;\times \;{10}^{3}$ 5.2 $\;\times \;{10}^{3}$ <0.018   Pagani et al. (2005)
050925 1.4 $\;\times \;{10}^{3}$ 1.4 $\;\times \;{10}^{3}$ <6.6 $\;\times \;{10}^{-3}$   Beardmore et al. (2005)
051210 894 840 0.40 0.15 This work
051221A 1.4 × 103 512 0.86 0.10 Soderberg et al. (2006); Belczynski et al. (2006)
  1.9 × 103 512 0.59 0.085
  2.4 × 103 512 0.43 0.082
  5.3 × 103 3.5 × 103 0.23 0.033
  8.8 × 103 3.5 × 103 0.24 0.035
  1.2 × 104 3.5 × 103 0.25 0.026
  1.6 × 104 3.5 × 103 0.20 0.076
  1.9 × 104 3.5 × 103 0.16 0.021
  2.3 × 104 3.5 × 103 0.11 0.023
  2.6 × 104 3.5 × 103 0.11 0.026
  3.0 × 104 3.5 × 103 0.088 0.015
  3.7 × 104 3.5 × 103 0.13 0.020
  4.5 × 104 1.0 × 104 0.079 0.011
  5.5 × 104 1.0 × 104 0.066 0.010
  1.0 × 105 4.1 × 104 0.017 2.7 × 10−3
  1.4 × 105 4.1 × 104 0.018 2.9 × 10−3
  2.0 × 105 5.7 × 104 0.013 1.9 × 10−3
  2.5 × 105 5.7 × 104 0.014 2.0 × 10−3
  3.1 × 105 5.7 × 104 9.0 × 10−3 1.7 × 10−3
  3.8 × 105 8.6 × 104 5.2 × 10−3 1.0 × 10−3
  4.7 × 105 8.6 × 104 5.8 × 10−3 1.1 × 10−3
  5.5 × 105 8.6 × 104 4.4 × 10−3 9.4 × 10−4
  6.4 × 105 8.3 × 104 3.6 × 10−3 9.4 × 10−4
  7.3 × 105 8.2 × 104 5.4 × 10−3 1.0 × 10−3
  9.8 × 105 4.1 × 105 2.3 × 10−3 4.1 × 10−4
  e1.3 × 105 5.4 × 103 0.022 2.2 × 10−3
  e1.4 × 105 5.5 × 103 0.021 2.1 × 10−3
  e1.4 × 105 6.4 × 103 0.018 1.9 × 10−3
  e1.5 × 105 6.6 × 103 0.018 1.8 × 10−3
  e1.6 × 105 6.3 × 103 0.017 1.8 × 10−3
  e3.9 × 105 9.5 × 103 6.1 × 10−3 8.8 × 10−4
  e4.0 × 105 1.0 × 104 5.5 × 10−3 8.0 × 10−4
  e4.1 × 105 1.0 × 104 5.3 × 10−3 7.9 × 10−4
  e1.3 × 106 1.8 × 104 5.5 × 10−4 1.9 × 10−4
  e1.7 × 106 2.5 × 104 3.8 × 10−4 1.4 × 10−4
  e2.3 × 106 4.8 × 104 1.9 × 10−4 7.2 × 10−5    
060121 1.1 × 104 153 0.61 0.14 Evans et al. (2007a, 2009)
  1.1 × 104 221 0.42 0.095
  1.1 × 104 206 0.45 0.10
  1.1 × 104 198 0.47 0.11
  1.1 × 104 208 0.34 0.087
  1.2 × 104 178 0.52 0.12
  1.2 × 104 183 0.51 0.12
  1.2 × 104 155 0.60 0.14
  1.2 × 104 193 0.36 0.094
  1.2 × 104 338 0.37 0.072
  1.6 × 104 281 0.27 0.069
  1.6 × 104 308 0.24 0.063
  1.6 × 104 196 0.39 0.10
  1.7 × 104 258 0.29 0.076
  1.7 × 104 246 0.31 0.080
  1.7 × 104 236 0.32 0.083
  1.8 × 104 221 0.34 0.089
  1.8 × 104 201 0.38 0.10
  1.8 × 104 617 0.19 0.039
  2.2 × 104 361 0.23 0.056
  7.0 × 104 1.3 × 103 0.060 0.015
  7.5 × 104 2.5 × 103 0.030 7.9 × 10−3
  8.1 × 104 2.3 × 103 0.053 0.011
  8.9 × 104 7.6 × 103 0.043 8.0 × 10−3
  1.6 × 105 1.2 × 104 0.021 4.9 × 10−3
  1.7 × 105 1.9 × 103 0.038 0.010
  1.8 × 105 7.3 × 103 0.033 7.2 × 10−3
  2.0 × 105 3.6 × 104 0.012 3.2 × 10−3
  2.5 × 105 4.9 × 104 0.013 3.4 × 10−3
  3.1 × 105 6.5 × 104 7.7 × 10−3 2.1 × 10−3
  4.2 × 105 1.5 × 105 4.1 × 10−3 1.2 × 10−3
  6.3 × 105 2.8 × 105 3.5 × 10−3 9.7 × 10−4
  1.0 × 106 8.3 × 104 1.8 × 10−3 8.5 × 10−4
060313 4.2 × 103 161 1.3 0.52 This work
  4.3 × 103 92 1.4 0.52
  4.4 × 103 97 1.7 0.62
  4.5 × 103 128 1.2 0.43
  4.7 × 103 113 1.2 0.45
  4.8 × 103 113 1.1 0.39
  4.9 × 103 128 1.1 0.43
  5.0 × 103 65 2.4 0.91
  5.1 × 103 133 0.91 0.33
  5.2 × 103 146 0.83 0.30
  5.4 × 103 176 0.64 0.23
  5.5 × 103 163 0.75 0.27
  5.7 × 103 95 1.4 0.54
  5.8 × 103 211 0.61 0.23
  6.0 × 103 125 1.2 0.46
  6.1 × 103 153 0.85 0.31
  6.3 × 103 125 1.0 0.38
  6.5 × 103 286 0.96 0.30
  1.0 × 104 301 0.38 0.14
  1.0 × 104 309 0.43 0.16
  1.1 × 104 228 0.66 0.25
  1.1 × 104 243 0.47 0.17
  1.1 × 104 266 0.44 0.16
  1.1 × 104 384 0.346 0.13
  1.2 × 104 344 0.36 0.13
  1.2 × 104 459 0.37 0.12
  1.6 × 104 602 0.19 0.069
  1.6 × 104 412 0.29 0.11
  1.7 × 104 414 0.27 0.10
  1.8 × 104 1.1 × 103 0.25 0.078
  2.2 × 104 934 0.11 0.043
  2.3 × 104 545 0.20 0.075
  2.3 × 104 1.1 × 103 0.13 0.047
  2.8 × 104 781 0.15 0.057
  2.9 × 104 1.8 × 103 0.089 0.031
  3.4 × 104 2.5 × 103 0.061 0.022
  4.2 × 104 6.3 × 103 0.058 0.024
  5.2 × 104 1.2 × 104 0.036 0.014
  8.7 × 104 5.9 × 104 0.013 5.4 × 10−3
  2.7 × 105 3.1 × 105 3.6 × 10−3 1.2 × 10−3
060502B 3.8 $\;\times \;{10}^{4}$ 6.6 $\;\times \;{10}^{4}$ <1.0 $\;\times \;{10}^{-3}$   Evans et al. (2007a, 2009)
060801 918 954 0.20 0.077 This work
061006 3.6 × 103 670 0.12 0.067 This work
  4.4 × 103 997 0.11 0.060
  9.4 × 103 4.9 × 103 0.046 0.026
  1.4 × 104 4.7 × 103 0.054 0.030
  6.6 × 104 2.4 × 105 6.0 × 10−3 3.3 × 10−3
061201 5.7 × 103 238 0.55 0.31 This work
  5.9 × 103 188 0.56 0.31
  6.1 × 103 238 0.45 0.26
  6.4 × 103 264 0.66 0.34
  1.2 × 104 5.9 × 103 0.11 0.072
  2.1 × 104 1.2 × 104 0.055 0.036
  6.7 × 104 1.3 × 105 4.8 × 10−3 2.9 × 10−3
061210 2.3 × 105 5.3 × 104 0.048 0.013 Evans et al. (2007a, 2009)
  3.1 × 105 9.4 × 104 0.026 8.0 × 10−3
  4.2 × 105 1.3 × 105 0.018 6.0 × 10−3
  7.0 × 105 4.9 × 105 <0.014
061217 6.0 $\;\times \;{10}^{4}$ 3.2 $\;\times \;{10}^{5}$ <2.5 $\;\times \;{10}^{-3}$   Evans et al. (2007a, 2009)  
070209b 4.4 × 105 1.9 × 104 <8.3 × 10−4   Stratta et al. (2007b)
070406b 9.7 × 104 1.3 × 104 <1.8 × 10−3   Troja et al. (2007)
070429B 1.6 × 103 2.0 $\;\times \;{10}^{3}$ 0.32 0.080 Evans et al. (2007a, 2009)
  1.6 × 104 3.6 × 104 <0.024
070707a 4.1 $\;\times \;{10}^{4}$ 2.2 $\;\times \;{10}^{4}$ 0.15 0.032 Evans et al. (2007a, 2009)
  4.1 $\;\times \;{10}^{5}$ 1.9 $\;\times \;{10}^{5}$ <0.032
070714B 8.5 × 102 116 2.0 0.64 This work
  2.8 × 103 183 0.40 0.18
  3.1 × 103 311 0.24 0.11
  3.6 × 103 675 0.19 0.09
  5.9 × 103 417 0.15 0.075
  6.5 × 103 795 0.12 0.058
  9.2 × 103 1.4 × 103 0.054 0.027
  2.9 × 104 5.8 × 104 3.0 × 10−3 1.7 × 10−3
070724A 4.6 × 103 4.8 × 103 0.055 0.032 This work
  1.1 × 104 7.6 × 103 0.026 0.014
  1.8 × 104 5.2 × 103 0.024 0.013
  2.6 × 104 1.2 × 104 0.014 7.5 × 10−3
  5.3 × 104 5.5 × 104 0.010 5.4 × 10−3
  1.8 × 105 3.0 × 105 1.8 × 10−3 5.9 × 10−4
070729 2.0 $\;\times \;{10}^{4}$ 6.6 $\;\times \;{10}^{4}$ <3.8 $\;\times \;{10}^{-3}$   Evans et al. (2007a, 2009)
070809 1.1 × 103 271 0.27 0.13 This work
  1.6 × 103 660 0.20 0.080
  5.5 × 103 321 0.23 0.11
  5.9 × 103 507 0.14 0.068
  6.3 × 103 366 0.23 0.11
  6.8 × 103 555 0.13 0.062
  7.4 × 103 673 0.12 0.058
  1.1 × 104 673 0.10 0.047
  1.2 × 104 803 0.093 0.044
  1.3 × 104 989 0.085 0.039
  1.8 × 104 2.6 × 103 0.038 0.017
  2.4 × 104 2.0 × 103 0.050 0.021
070810Bb 983 7.2 × 103 <6.6 × 10−4   Starling et al. (2007)
071017b 2.0 $\;\times \;{10}^{5}$ 2.1 $\;\times \;{10}^{3}$ <5.9 $\;\times \;{10}^{-3}$   Evans et al. (2007b)
071112Ba 3.7 $\;\times \;{10}^{3}$ 2.2 $\;\times \;{10}^{3}$ <0.023   Perri et al. (2007)
071227 6.2 × 103 9.5 × 103 0.022 9.8 × 10−3 This work
  5.7 × 104 2.5 × 105 2.6 × 10−3 8.6 × 10−4    
080121a 2.0 $\;\times \;{10}^{5}$ 2.2 $\;\times \;{10}^{4}$ <4.0 $\;\times \;{10}^{-3}$   Troja et al. (2008)
081023 1.4 × 103 1.7 × 103 0.072 0.024 This work
  1.8 × 104 5.3 × 104 9.5 × 10−3 3.2 × 10−3
080426 1.1 × 103 100 2.13 0.48 Evans et al. (2007a, 2009)
  1.2 × 103 148 1.4 0.32
  1.3 × 103 95 2.2 0.50
  1.4 × 103 108 2.1 0.45
  1.5 × 103 125 1.7 0.38
  1.7 × 103 211 1.01 0.23
  1.9 × 103 191 1.44 0.29
  6.2 × 103 258 0.65 0.17
  6.6 × 103 687 0.24 0.063
  7.5 × 103 978 0.19 0.047
  1.3 × 104 2.1 × 103 0.11 0.025
  2.1 × 104 8.1 × 103 0.056 0.012
  3.8 × 104 2.0 × 104 0.021 5.7 × 10−3
  7.0 × 104 4.2 × 104 4.9 × 10−3 2.8 × 10−3
080503 920 1.1 × 103 0.45 0.18 This work
  e d3.9 × 105 3.2 × 104 2.1 × 10−3 9.6 × 10−4 Perley et al. (2009b)
  e1.9 × 106 3.3 × 104 <8.0 × 10−5   Perley et al. (2009b)
080702A 3.9 × 103 2.2 × 104 0.041 8.9 × 10−3 Evans et al. (2007a, 2009)
  7.5 × 104 7.6 × 104 <0.013
080905A 758 593 0.74 0.31 This work
080919 1.0 $\;\times \;{10}^{3}$ 1.5 $\;\times \;{10}^{3}$ 0.39 0.20 This work
  3.0 $\;\times \;{10}^{4}$ 1.7 $\;\times \;{10}^{5}$ 5.9 $\;\times \;{10}^{-3}$ 5.7 $\;\times \;{10}^{-3}$
081024A 597 1.6 $\;\times \;{10}^{3}$ 0.39 0.070 Evans et al. (2007a, 2009)
  1.5 $\;\times \;{10}^{4}$ 3.7 $\;\times \;{10}^{4}$ <3.2 $\;\times \;{10}^{-3}$
081226A 1.6 $\;\times \;{10}^{4}$ 4.3 $\;\times \;{10}^{4}$ 0.026 0.014 Evans et al. (2007a, 2009)
081226Ba 1.3 $\;\times \;{10}^{4}$ 8.0 $\;\times \;{10}^{3}$ <6.6 $\;\times \;{10}^{-3}$   Evans & Hoversten (2008)  
090305Ab 4.8 $\;\times \;{10}^{3}$ 1.3 $\;\times \;{10}^{4}$ <2.0 $\;\times \;{10}^{-3}$   Beardmore et al. (2009)
090426 1.0 × 103 95 1.2 0.26 Evans et al. (2007a, 2009)
  1.1 × 103 108 1.0 0.23
  1.2 × 103 95 1.2 0.26
  1.4 × 103 145 0.77 0.17
  1.5 × 103 92 1.2 0.27
  1.6 × 103 100 1.1 0.25
  1.7 × 103 178 0.62 0.14
  1.9 × 103 243 0.45 0.10
  2.2 × 103 221 0.68 0.13
  5.6 × 103 346 0.27 0.072
  6.0 × 103 351 0.27 0.071
  6.4 × 103 481 0.20 0.051
  6.9 × 103 479 0.20 0.051
  7.6 × 103 938 0.18 0.035
  1.8 × 104 1.2 × 104 0.060 0.013
  2.3 × 105 7.5 × 105 1.5 × 10−3 6.5 × 10−4
090510 1.0 × 103 31 2.7 1.0 This work
  2.8 × 103 89 0.61 0.26
  2.9 × 103 141 0.47 0.21
  3.1 × 103 174 0.37 0.17
  3.3 × 103 338 0.18 0.081
  3.6 × 103 251 0.22 0.10
  3.9 × 103 321 0.18 0.084
  6.2 × 103 770 0.051 0.027
  6.8 × 103 547 0.073 0.039
  1.3 × 104 9.2 × 103 0.020 0.010
  4.1 × 104 7.6 × 104 4.0 × 10−3 1.3 × 10−3
090515 8.1 × 102 2.2 × 103 0.24 0.093 This work
090607 9.3 × 102 2.0 × 103 0.060 0.017 Evans et al. (2007a, 2009)
  2.0 × 104 2.4 × 104 <6.6 × 10−3
090621B 7.2 × 103 8.3 × 103 0.04 0.01 Evans et al. (2007a, 2009)
  2.5 × 104 2.5 × 104 6.0 $\;\times \;{10}^{-3}$ 3.4 $\;\times \;{10}^{-3}$
090916b 6.5 $\;\times \;{10}^{4}$ 1.2 $\;\times \;{10}^{4}$ <9.4 × 10−4   Troja et al. (2009)
091109B 5.7 × 103 2.4 × 103 0.097 0.019 Evans et al. (2007a, 2009)
  1.6 × 104 1.3 × 104 0.030 0.023
  5.8 × 104 5.8 × 104 0.011 7.9 × 10−3
  2.0 × 105 1.2 × 105 0.011 9.6 × 10−3    
100117A 3.1 $\;\times \;{10}^{4}$ 3.6 $\;\times \;{10}^{5}$ 2.2 $\;\times \;{10}^{-3}$ 7.2 $\;\times \;{10}^{-4}$ This work
100206A 2.4 $\;\times \;{10}^{4}$ 9.5 $\;\times \;{10}^{4}$ <3.3 $\;\times \;{10}^{-3}$   Evans et al. (2007a, 2009)
100213 2.0 $\;\times \;{10}^{4}$ 3.1 $\;\times \;{10}^{4}$ <0.033   Evans et al. (2007a, 2009)
100625A 1.6 × 104 1.3 × 104 4.4 × 10−3 1.8 × 10−3 Fong et al. (2013)
  9.0 × 104 4.6 × 104 <8.2 × 10−3   Fong et al. (2013)
100628Aa e3.9 $\;\times \;{10}^{5}$ 2.0 $\;\times \;{10}^{4}$ <5.9 $\;\times \;{10}^{4}$   This work
100702A 1.4 $\;\times \;{10}^{4}$ 4.3 $\;\times \;{10}^{4}$ <0.011   Evans et al. (2007a, 2009)
101219A 7.7 × 102 317 0.58 0.20 Fong et al. (2013)
  8.6 × 103 1.4 × 104 0.038 0.014
  e3.4 × 105 2.0 × 105 <1.9 × 10−4
101224A 1.9 $\;\times \;{10}^{3}$ 4.0 $\;\times \;{10}^{4}$ 0.015 5.0 $\;\times \;{10}^{-3}$ Evans et al. (2007a, 2009)  
110112A 4.6 × 103 1.0 $\;\times \;{10}^{3}$ 0.083 0.028 Fong et al. (2013)
  5.4 × 103 605 0.14 0.047
  6.2 × 103 941 0.14 0.043
  1.1 × 104 2.5 × 103 0.064 0.016
  1.9 × 104 6.6 × 103 0.025 8.8 × 10−3
  2.8 × 104 1.3 × 104 0.012 4.3 × 10−3
  4.5 × 104 2.3 × 104 7.3 × 10−3 3.1 × 10−3
  1.4 × 105 2.7 × 105 2.0 × 10−3 1.0 × 10−3
110112Bb 6.1 $\;\times \;{10}^{4}$ 1.2 $\;\times \;{10}^{4}$ <2.4 $\;\times \;{10}^{-3}$   Littlejohns et al. (2011)
111020A 1.1 × 103 520 1.0 0.20 Fong et al. (2012b)
  5.8 × 103 2.5 × 103 0.19 0.039
  1.2 × 104 2.5 × 103 0.13 0.032
  1.9 × 104 6.4 × 103 0.11 0.027
  2.6 × 104 6.3 × 103 0.14 0.037
  3.2 × 104 5.9 × 103 0.12 0.031
  4.2 × 104 1.6 × 104 0.10 0.028
  1.0 × 105 1.5 × 105 0.019 6.4 × 10−3
  2.9 × 105 2.1 × 105 0.013 4.9 × 10−3
  f6.9 × 104 1.4 × 104 0.031 2.4 × 10−3
  e2.6 × 105 2.0 × 104 7.0 × 10−3 1.0 × 10−3
  5.1 × 105 2.1 × 105 <0.019
  e8.8 × 105 2.0 × 104 <1.1 × 10−3
111117A 1.0 × 103 178 0.55 0.20 Margutti et al. (2012)
  1.2 × 103 211 0.45 0.15
  5.0 × 103 881 0.11 0.035
  5.5 × 104 1.9 × 105 4.0 × 10−3 1.4 × 10−3
  e2.6 × 105 4.0 × 104 4.2 × 10−4 1.6 × 10−4
111121A 4.2 × 103 85 2.17 0.47 Evans et al. (2007a, 2009)
  4.3 × 103 133 1.3 0.30
  4.5 × 103 143 1.4 0.31
  4.7 × 103 228 1.4 0.26
  4.9 × 103 113 1.6 0.37
  5.1 × 103 196 1.1 0.22
  5.3 × 103 246 0.93 0.21
  5.6 × 103 326 1.0 0.20
  6.0 × 103 133 1.3 0.30
  6.2 × 103 143 1.2 0.28
  6.3 × 103 160 1.1 0.25
  6.5 × 103 158 1.1 0.25
  6.7 × 103 206 1.1 0.21
  1.0 × 104 155 1.2 0.26
  1.0 × 104 183 1.0 0.23
  1.1 × 104 384 0.34 0.090
  1.1 × 104 188 0.94 0.21
  1.1 × 104 181 0.74 0.19
  1.1 × 104 243 0.54 0.14
  1.1 × 104 223 0.60 0.16
  1.2 × 104 268 0.50 0.13
  1.2 × 104 657 0.37 0.072
  1.6 × 104 985 0.24 0.063
  1.8 × 104 1.6 × 103 0.17 0.043
  2.2 × 104 667 0.22 0.057
  2.3 × 104 1.8 × 103 0.12 0.026
  4.2 × 104 3.7 × 104 0.045 8.3 × 10−3
  1.4 × 105 6.5 × 104 <0.020
111222A 9.7 × 104 7.3 × 103 0.047 9.5 × 10−3 Evans et al. (2007a, 2009)  
  7.8 × 105 5.2 × 104 <0.027  
  4.0 × 106 1.7 × 105 <0.014      
120305A 2.3 $\;\times \;{10}^{4}$ 9.4 $\;\times \;{10}^{4}$ 0.016 8.0 $\;\times \;{10}^{-3}$ Evans et al. (2007a, 2009)
120521A 6.8 × 103 7.3 × 103 <0.020 Evans et al. (2007a, 2009)
120630A 6.6 × 102 1.2 × 103 0.11 0.024 Evans et al. (2007a, 2009)
120804A 4.3 × 103 203 1.1 0.23 Berger et al. (2013)
  4.5 × 103 211 0.82 0.20
  4.7 × 103 178 0.85 0.22
  4.9 × 103 181 1.1 0.26
  5.2 × 103 281 0.54 0.14
  5.4 × 103 263 0.58 0.15
  5.7 × 103 301 0.50 0.13
  6.0 × 103 349 0.43 0.12
  6.4 × 103 494 0.34 0.090
  1.1 × 104 2.6 × 103 0.29 0.056
  1.7 × 104 2.5 × 103 0.20 0.051
  2.3 × 104 2.6 × 103 0.11 0.021
  3.0 × 104 5.7 × 103 0.096 0.026
  3.4 × 104 2.6 × 103 0.10 0.021
  4.3 × 104 8.2 × 103 0.049 0.013
  6.2 × 104 2.3 × 104 0.076 0.016
  1.4 × 105 9.3 × 104 0.048 0.014
  3.1 × 105 2.8 × 105 6.8 × 10−3 2.2 × 10−3
  5.0 × 105 2.3 × 104 <0.0456
  e8.1 × 105 2.0 × 104 3.5 × 10−3 6.2 × 10−4
  f1.6 × 106 2.5 × 104 3.0 × 10−3 6.2 × 10−4
  e4.0 × 106 5.9 $\;\times \;{10}^{4}$ 6.6 $\;\times \;{10}^{-4}$ 1.3 $\;\times \;{10}^{-3}$ This work
120817Bb 6.8 $\;\times \;{10}^{4}$ 2.8 $\;\times \;{10}^{3}$ <5.9 $\;\times \;{10}^{-3}$   Pagani (2012)
121226A 4.3 × 103 589 0.58 0.15 Evans et al. (2007a, 2009)
  4.9 × 103 542 0.62 0.16
  5.5 × 103 679 0.49 0.13
  7.9 × 103 4.7 × 103 0.36 0.079
  6.2 × 104 8.3 × 104 0.030 8.6 × 10−3
  1.2 × 105 6.2 × 103 0.034 0.027    
130313Aa 2.1 $\;\times \;{10}^{3}$ 5.3 $\;\times \;{10}^{4}$ <0.013   Evans et al. (2007a, 2009)
130515A 1.2 × 104 3.0 × 104 <0.014   Evans et al. (2007a, 2009)
130603B 4.0 × 103 33 3.8 1.2 Fong et al. (2014)
  4.0 × 103 41 3.3 1.0
  4.1 × 103 75 1.7 0.54
  4.1 × 103 44 2.9 0.95
  4.2 × 103 44 3.0 0.91
  4.2 × 103 36 3.5 1.2
  4.3 × 103 75 1.8 0.53
  4.3 × 103 44 3.0 1.0
  4.4 × 103 54 2.5 0.71
  4.4 × 103 41 3.2 1.1
  4.5 × 103 65 2.0 0.63
  4.5 × 103 31 4.1 1.3
  4.6 × 103 44 3.0 0.99
  4.6 × 103 52 2.4 0.80
  4.7 × 103 65 2.0 0.68
  4.7 × 103 52 2.6 0.74
  4.8 × 103 98 1.6 0.46
  4.9 × 103 57 2.2 0.72
  4.9 × 103 44 3.0 0.98
  5.0 × 103 59 2.3 0.77
  5.1 × 103 83 1.5 0.43
  5.1 × 103 59 2.5 0.71
  5.2 × 103 93 1.4 0.43
  5.3 × 103 96 1.4 0.45
  5.4 × 103 88 1.6 0.49
  5.5 × 103 72 1.8 0.59
  5.5 × 103 41 3.0 0.98
  5.6 × 103 67 1.9 0.59
  5.7 × 103 85 1.5 0.44
  5.8 × 103 78 1.7 0.50
  5.8 × 103 65 2.0 0.59
  5.9 × 103 75 1.6 0.54
  6.0 × 103 67 1.9 0.56
  6.0 × 103 91 1.4 0.42
  6.2 × 103 114 1.1 0.34
  6.2 × 103 65 2.0 0.59
  6.3 × 103 59 2.1 0.59
  6.4 × 103 91 1.4 0.42
  6.5 × 103 122 1.5 0.40
  9.8 × 103 91 1.3 0.36
  9.9 × 103 143 0.83 0.23
  1.0 × 104 166 0.71 0.19
  1.1 × 104 1.5 × 103 0.57 0.16
  1.2 × 104 166 0.65 0.19
  1.2 × 104 226 0.49 0.13
  1.2 × 104 205 0.72 0.17
  1.6 × 104 338 0.29 0.076
  1.6 × 104 252 0.38 0.11
  1.7 × 104 2.0 × 103 0.21 0.056
  2.1 × 104 450 0.19 0.048
  2.2 × 104 463 0.19 0.047
  2.8 × 104 1.1 × 103 0.077 0.029
  3.6 × 104 5.9 × 103 0.038 0.011
  4.2 × 104 5.5 × 103 0.054 0.014
  4.8 × 104 6.7 × 103 0.021 5.6 × 10−3
  1.5 × 105 2.1 × 105 4.0 × 10−3 8.8 × 10−4
  f2.3 × 105 1.9 × 104 2.4 × 10−3 3.2 × 10−4
  f5.6 × 105 3.0 × 104 8.2 × 10−4 5.0 × 10−4
130626Ab 8.7 $\;\times \;{10}^{5}$ 7.2 $\;\times \;{10}^{5}$ <1.8 $\;\times \;{10}^{-3}$   Page & de Pasquale (2013)
130716A 1.2 × 104 2.5 × 104 0.014 4.0 × 10−3 Evans et al. (2007a, 2009)
  4.0 × 104 1.3 × 104 <7.2 × 10−3
130822A 3.0 $\;\times \;{10}^{4}$ 1.9 $\;\times \;{10}^{4}$ <4.6 $\;\times \;{10}^{-3}$   Evans et al. (2007a, 2009)
130912A 9.7 × 102 95 5.6 1.3 Evans et al. (2007a, 2009)
  1.1 × 103 103 2.7 0.60
  1.2 × 103 100 1.3 0.30
  1.3 × 103 105 1.3 0.29
  1.4 × 103 95 1.4 0.31
  1.5 × 103 180 1.6 0.26
  5.2 × 103 780 0.26 0.068
  6.4 × 103 1.8 × 103 0.21 0.04
  1.2 × 104 2.5 × 103 0.066 0.016
  1.8 × 104 2.5 × 103 0.057 0.015
  2.8 × 104 1.4 × 104 0.025 4.9 × 10−3
  1.1 × 105 5.8 × 104 <3.9 × 10−3
131004A 1.8 × 102 306 13.2 3.1 Evans et al. (2007a, 2009)
  4.4 × 102 115 34.8 8.1
  5.5 × 102 115 33.9 8.1
  6.9 × 102 158 24.8 5.9
  8.8 × 102 228 31.9 5.5
  1.1 × 104 1.5 × 103 0.23 0.049
  2.4 × 104 1.8 × 104 0.055 0.015
  5.9 × 104 4.7 × 104 0.050 0.014
  1.1 × 105 4.1 × 104 <0.017
131224Ab 1.3 $\;\times \;{10}^{4}$ 4.0 $\;\times \;{10}^{3}$ <4.1 $\;\times \;{10}^{-3}$   Gompertz et al. (2013)  
140129B 9.9 × 102 65 3.01 0.68 Evans et al. (2007a, 2009)
  1.1 × 103 45 4.62 1.01
  1.1 × 103 60 3.24 0.73
  4.7 × 103 624 0.27 0.052
  6.7 × 103 366 0.20 0.064
140320A 1.1 × 103 1.2 × 104 0.13 0.032 Evans et al. (2007a, 2009)
  2.7 × 104 1.2 × 104 <0.062
140402Ab 4.2 × 104 4.5 × 103 <4.2 $\;\times \;{10}^{-3}$   Pagani (2014)
140414Ab 4.1 × 104 1.7 × 103 <0.027   D'Avanzo et al. (2014a)
140516A 1.5 × 103 2.5 × 104 0.013 2.9 × 10−3 Evans et al. (2007a, 2009)
  1.9 × 105 3.1 × 105 1.7 × 10−3 9.7 × 10−4
140606Ab 4.6 × 103 2.4 × 103 <8.7 × 10−3   Stroh et al. (2014)
140619Bb 5.9 × 104 3.9 × 103 <3.4 × 10−3   Maselli & D'Avanzo (2014)
140622A 1.3 × 102 50 1.86 0.40 Evans et al. (2007a, 2009)
  2.3 × 103 3.5 × 104 0.015 2.9 × 10−3
  8.0 × 104 2.3 × 104 <8.4 × 10−3
140903A 1.0 × 103 221 1.02 0.23 Evans et al. (2007a, 2009)
  1.2 × 103 176 1.3 0.30
  1.4 × 103 303 0.74 0.17
  5.0 × 103 223 0.93 0.16
  5.4 × 103 158 0.78 0.18
  5.6 × 103 243 0.95 0.16
  6.2 × 103 130 0.95 0.21
  6.3 × 103 123 0.86 0.19
  6.5 × 103 183 1.05 0.21
  6.8 × 103 288 0.93 0.16
  7.2 × 103 338 0.86 0.14
  1.1 × 104 160 0.60 0.14
  1.1 × 104 216 0.42 0.10
  1.1 × 104 178 0.54 0.12
  1.1 × 104 173 0.59 0.13
  1.1 × 104 216 0.55 0.11
  1.3 × 104 333 0.49 0.085
  1.6 × 104 223 0.42 0.098
  1.7 × 104 228 0.32 0.085
  1.7 × 104 203 0.370 0.096
  1.7 × 104 133 0.75 0.17
  1.7 × 104 333 0.38 0.076
  2.2 × 104 517 0.25 0.065
  2.3 × 104 354 0.36 0.093
  2.3 × 104 461 0.27 0.070
  2.8 × 104 354 0.23 0.057
  2.8 × 104 253 0.30 0.077
  2.9 × 104 366 0.20 0.054
  3.1 × 104 5.1 × 103 0.18 0.033
  4.2 × 104 6.0 × 103 0.13 0.034
  4.6 × 104 479 0.21 0.052
  5.4 × 104 6.5 × 103 0.080 0.018
  6.8 × 104 1.2 × 104 0.076 0.0142
  1.2 × 105 8.6 × 104 0.029 6.5 × 10−3
  2.6 × 105 5.8 × 104 <0.011
140930B 1.1 × 103 158 0.56 0.13 Evans et al. (2007a, 2009)
  1.2 × 103 115 0.77 0.17
  1.3 × 103 133 0.66 0.15
  1.5 × 103 196 0.45 0.10
  1.7 × 103 191 0.35 0.090
  1.9 × 103 221 0.40 0.090
  2.1 × 103 216 0.41 0.093
  2.3 × 103 236 0.28 0.074
  2.6 × 103 306 0.29 0.066
  6.3 × 103 559 0.13 0.033
  9.7 × 103 7.7 × 103 0.050 8.7 × 10−3
  8.0 × 104 1.2 × 105 4.5 × 10−3 1.3 × 10−3
  1.7 × 105 925 <0.025
  e3.2 × 105 2.3 × 104 3.3 × 10−4 1.6 × 10−4 This work
  e2.0 × 106 3.4 × 104 <2.7 × 10−4   This work
141202Ab 1.2 × 105 5.1 × 104 <6.1 × 10−3   Pagani & Evans (2014)
141205Ab 2.9 × 104 5.0 × 103 <3.3 × 10−3   Starling & Page (2014)
141212A 2.1 × 104 2.9 × 104 9.1 × 10−3 3.5 × 10−3 Evans et al. (2007a, 2009)  
150101A 1.3 × 103 2.3 × 104 0.016 3.7 × 10−3 Evans et al. (2007a, 2009)
  6.0 × 104 1.8 × 104 <0.010
150101B e6.9 × 105 1.5 × 104 0.011 1.1 × 10−3 Fong et al., in prep.
  e3.4 × 106 1.5 × 104 1.9 × 10−3 4.7 × 10−4 Fong et al., in prep.
150120A 8.3 × 103 1.2 × 104 <0.031   Evans et al. (2007a, 2009)
150301A 1.4 × 104 4.0 × 104 <0.051   Evans et al. (2007a, 2009)

Notes. Upper limits correspond to 3σ. Unless otherwise stated, all data are taken with Swift/XRT and X-ray flux densities are at 1 keV.

aWe employed a fiducial spectral index of βX = −1. bWe employed a fiducial count rate-to-unabsorbed flux conversion factor of 10−11 erg cm−2 s−1 and spectral index βX = −1. cReported flux is in the energy range of 0.7–10 keV. dLate-time re-brightening in GRB 080503 light curve is observed in both optical and X-ray bands and is unlikely the afterglow (Perley et al. 2009b). eChandra observation. fXMM-Newton observation.

Download table as:  ASCIITypeset images: 1 2 3 4 5 6 7 8 9 10

Table 7.  Short GRB Optical/Near-IR afterglow Catalog

GRB δt Telescope Instrument Filter Exposure Time Fν σ References
  (hr)       (s) (μJy) (μJy)  
050202 12.6 Mount John MOA R 900 <42.89   Castro-Tirado et al. (2005)
050509B 2.1 WIYN OPTIC r 600 <0.75   Bloom et al. (2006)
050709 34.0 Danish tel. DFOSC R 7200 2.34 0.12 Hjorth et al. (2005b)
  59.1 VLT FORS2 V 3600 0.64 0.07 Covino et al. (2006)
  59.3 VLT FORS2 R 3000 0.90 0.05  
  60.0 Danish tel. DFOSC R 10200 1.17 0.26 Hjorth et al. (2005b)
  104.7 VLT FORS1 V 3600 <0.36   Covino et al. (2006)
  134.4 HST ACS F814W 6360 0.34 0.006 Fox et al. (2005)
  235.2 HST ACS F814W 6360 0.17 0.008  
  832.8 HST ACS F814W 6360 <0.02  
050724A 11.4 VLT FORS1 V 480 16.0 0.45 Malesani et al. (2007b)
  11.6 Magellan/Baade PANIC K 1320 45.6 1.4 Berger et al. (2005)
  11.8 VLT FORS1 R 540 17.8 0.7 Malesani et al. (2007b)
  11.8 VLT FORS1 I 540 18.37 0.51  
  12.0 Swope 40-in   I 1800 19.1 0.2 Berger et al. (2005)
  14.2 Swope 40-in   I 1800 25.2 0.9  
  34.8 VLT FORS1 I 540 2.81 0.33 Malesani et al. (2007b)
  34.9 Magellan/Baade PANIC K 1320 <5.4   Berger et al. (2005)
  35.0 VLT FORS1 R 540 3.35 0.29 Malesani et al. (2007b)
  36.7 Swope 40-in   I 2700 <9.1   Berger et al. (2005)
  83.1 VLT FORS1 I 540 0.33 0.12 Malesani et al. (2007b)
050813 13.2 CAHA 2.2 m CAFOS I 6000 <1.82   Ferrero et al. (2007)
  14.1 CAHA 2.2 m CAFOS R 4140 <1.43    
050906 21.4 VLT FORS2 R 1800 <0.15   Levan et al. (2008)
051210 19.4 Magellan/Clay LDSS3 r 1200 <1.6   Berger et al. (2007)
  43.4 VLT FORS1 Rc 3600 <0.32   Kann et al. (2011)
051221A 3.1 Gemini-N GMOS r   16.8 1.3 Soderberg et al. (2006)
  3.4 Gemini-N GMOS r   15.6 1.2  
  26.9 Gemini-N GMOS r   2.5 0.19  
  27.2 Gemini-N GMOS i   2.3 0.54  
  51.0 Gemini-N GMOS i   0.83 0.32  
  51.3 Gemini-N GMOS z   1.1 0.47  
  51.6 Gemini-N GMOS r   0.93 0.11  
  75.7 Gemini-N GMOS r   0.94 0.28  
  123.6 Gemini-N GMOS r   0.50 0.11  
  147.8 Gemini-N GMOS r   0.32    
060121 0.37 OSN   I 120 19.3 4.4 de Ugarte Postigo et al. (2006)
  0.70 OSN   I 120 10.0 2.8  
  2.0 NOT ALFOSC R   3.3 0.70 Levan et al. (2006)
  2.5 TNG DOLoRes Rc   2.1 0.31 Kann et al. (2011)
  2.6 NOT ALFOSC R   6.1 1.9 Levan et al. (2006)
  2.7 OSN   I 300 10.8 2.5 de Ugarte Postigo et al. (2006)
  2.8 OSN   R 600 3.7 0.97  
  3.9 CAHA 2.2 m   R 1200 1.1 0.33  
  4.4 CAHA 2.2 m   R 1800 4.6 0.83  
  5.4 CAHA 2.2 m   R 1200 1.2 0.49  
  5.6 Bok 90Prime R   1.1 0.22 Levan et al. (2006)
  6.5 Bok 90Prime B   <0.96    
  7.3 Bok 90Prime R   1.2 0.18  
  7.3 CAHA 2.2 m   R 1800 1.4 0.37  
  7.4 WHT   K 750 17.1 1.4 de Ugarte Postigo et al. (2006)
  7.6 TNG OIG Rc   1.4 0.37 Kann et al. (2011)
  7.7 OSN   I 1500 <2.5   de Ugarte Postigo et al. (2006)
  11.3 Bok 90Prime R   1.6 0.41 Levan et al. (2006)
  13.1 WIYN   R   1.2 0.24  
  30.0 OSN   R 10800 <0.8   de Ugarte Postigo et al. (2006)
  31.3 WHT   K 1000 6.3 1.6  
  33.5 APO/ARC NIC-FPS K 3600 7.5 0.65 de Ugarte Postigo et al. (2006)
  33.6 WIYN   R   0.41 0.06 Levan et al. (2006)
  51.5 CAHA 2.2 m   R 5400 0.55 0.14 de Ugarte Postigo et al. (2006)
  127.8 APO/ARC NIC-FPS K 3600 <2.13    
060313 0.045 Swift UVOT V 200 55.0 18.8 Roming et al. (2006)
  0.12 Swift UVOT U 50 22.7 13.0  
  0.22 Swift UVOT white 50 30.5 11.6  
  0.64 SMARTS ANDICAM Rc   23.2 2.0 Kann et al. (2011)
  0.64 SMARTS ANDICAM Ic   19.8 5.3 Kann et al. (2011)
  1.2 Gemini-S GMOS r 1800 36.6 6.6 Berger et al. (2007)
  1.3 Swift UVOT B 886 18.7 5.3 Roming et al. (2006)
  1.5 Swift UVOT UVW2 900 6.4 1.9  
  1.7 Swift UVOT V 684 33.7 9.5  
  2.9 Swift UVOT UVM2 900 4.7 2.3  
  3.1 Swift UVOT UVW1 900 12.4 2.4  
  3.3 Swift UVOT U 708 7.4 1.8  
  4.5 Swift UVOT B 886 12.2 5.8  
  6.1 Swift UVOT UVM2 900 3.4 1.2  
  6.3 Swift UVOT UVW1 900 3.3 1.5  
  6.6 Swift UVOT U 716 8.8 2.1  
  9.6 Swift UVOT UVW1 900 3.0 1.4  
  9.8 Swift UVOT U 658 3.4 1.9  
  24.2 Gemini-S GMOS r 900 3.7 0.75 Berger et al. (2007)
  48.5 Gemini-S GMOS r 1500 1.3 0.18  
  240 Gemini-S GMOS r 1800 <0.48    
060502B 16.8 Gemini-N GMOS R 1500 <0.62   Price et al. (2006)
060801 12.3 VLT FORS2 Rc 2400 <0.24   Kann et al. (2011)
  16.0 Hale LFC r 1500 <0.83   Berger et al. (2007)
061006 14.9 VLT FORS1 I 1800 4.3 0.20 D'Avanzo et al. (2009)
  45.9 VLT FORS1 I 1800 2.5 0.17
  60.0 VLT FORS1 I 1260 2.6 0.22
  49.7 VLT FORS1 R 645 1.5 0.17
061201 8.6 VLT FORS2 I 3640 2.9 0.22 Stratta et al. (2007a)
  9.0 VLT FORS2 R 780 1.9 0.23
  33.1 VLT FORS2 I 5200 <0.91
  81.4 VLT FORS2 I 2400 <0.63
061210 2.1 Gemini-N GMOS r 5400 <1.44   Berger et al. (2007)
061217 2.8 Magellan/Clay LDSS3 r 300 <2.0    
070209 0.29 PROMPT   V 120 <81.66   Johnson et al. (2007)
070406 24.5 NOT ALFOSC R 1800 <1.26   Malesani et al. (2007a)
070429B 4.8 Gemini-S GMOS R 900 <0.50   Perley et al. (2007)
  27.1 Blanco ISPI J 1080 <4.0   Nysewander et al. (2007)
070707 11.0 VLT FORS1 R 1200 2.1 0.039 Piranomonte et al. (2008)
  33.8 VLT FORS1 R 1200 1.0 0.047
  37.4 VLT FORS1 R 180 0.82 0.10
  59.3 VLT FORS1 R 1200 0.26 0.020
  61.0 VLT ISAAC J 1800 <0.60
  83.2 VLT FORS1 R 3600 0.078 0.014
  108.0 VLT FORS1 R 5100 0.066 0.015
070714B 0.21 Liverpool   r 60 37.2 6.7 Graham et al. (2009)
  0.27 Liverpool   r 120 43.1 4.6
  0.30 Liverpool   i 120 50.7 8.6
  0.40 Liverpool   r 120 37.9 9.8
  0.44 Liverpool   r 120 38.3 9.0
  23.6 WHT   R 2400 1.0 0.22
  24.0 TNG NICS J   <9.1   Covino et al. (2007)
070724A 2.3 Gemini-N GMOS g 360 <1.5   Berger et al. (2009)
  2.3 Gemini-N GMOS i 360 1.1 0.1  
  2.8 Gemini-N NIRI Ks 900 9.3 1.5  
  3.1 Gemini-N NIRI J 900 3.4 0.3 Berger et al. (2009); this work
  3.4 Gemini-N NIRI H 450 7.8 0.44 Berger et al. (2009); this work
  3.7 Gemini-N NIRI Ks 900 8.9 1.5 Berger et al. (2009)
070729 8.4 ESO/MPG GROND r   <0.48   Nicuesa Guelbenzu et al. (2012a)
  8.4 ESO/MPG GROND J   <3.02
070809 11.2 Keck I LRIS R 640 0.82 0.17 Perley et al. (2007)
  35.1 Keck I LRIS R   0.36 0.11
  11.21 Keck I LRIS g 880 0.25 0.051
  35.14 Keck I LRIS g   <0.19
070810B 23.4 Keck I LRIS R 630 <0.21   Kocevski et al. (2007)
071112B 6.3 Magellan/Clay LDSS3 r 1200 <2.0   Berger & Challis (2007)
  9.6 ESO/MPG GROND J   <8.32   Nicuesa Guelbenzu et al. (2012a)
071227 4.2 ESO/MPG GROND J   <36.3    
  7.0 VLT FORS2 R 240 1.6 0.12 D'Avanzo et al. (2009)
  80.9 VLT FORS2 R 540 0.86 0.15  
080121 55.2 Swift UVOT white 2015 <4.57   Troja et al. (2008)
080123 0.04 Swift UVOT white 100 <22.91   Ukwatta et al. (2008)
080426a 7.5 CAHA 2.2 m   I 3300 <7.06   de Ugarte Postigo et al. (2008)
080503 0.037 Swift UVOT white 98 <14.2   Perley et al. (2009b)
  1.0 Gemini-N GMOS r 180 <0.20
  1.2 Gemini-N GMOS g 900 0.089 0.018
  1.2 Keck I LRIS B 300 <0.21
  1.3 Keck I LRIS R 630 <0.21
  1.5 Gemini-N GMOS r 800 <0.081
  1.8 Gemini-N GMOS i 800 <0.078
  2.2 Gemini-N GMOS z 800 <0.16
  2.4 Gemini-N GMOS g 360 <0.65
  b26.0 Gemini-N GMOS r 1800 0.27 0.037
  b47.4 Gemini-N GMOS r 1620 0.23 0.038
  b50.2 Gemini-N GMOS g 720 0.12 0.024
  b74.0 Gemini-N GMOS r 2700 0.19 0.046
  b97.1 Gemini-N GMOS r 2880 0.13 0.025
  125 Gemini-N NIRI Ks 2760 <0.70
  b128.6 HST WFPC2 F606W 0.067 0.011
080702A 12.06 Loiano   R 1800 <44.92   Greco et al. (2008)
080905A 8.5 NOT ALFOSC R 1800 0.72 0.39 Rowlinson et al. (2010b)
  14.3 VLT FORS2 R 2400 0.59 0.20  
  17.5 ESO/MPG GROND r 660 <3.7   Nicuesa Guelbenzu et al. (2012a)
  17.5 ESO/MPG GROND J 660 <27.5    
  36.0 VLT FORS2 R 2400 <0.30   Rowlinson et al. (2010b)
080919a 0.19 ESO/MPG GROND J   <73.3   Nicuesa Guelbenzu et al. (2012a)
081024A 1.9 Faulkes North   R 600 <93.93   Melandri et al. (2008)
081024B 30 P200 LFC   R <1.36   Cenko & Kasliwal (2008)
081226A 0.37 ESO/MPG GROND r   1.9 0.42 Nicuesa Guelbenzu et al. (2012a)
  1.1 ESO/MPG GROND g   0.38 0.12
  1.1 ESO/MPG GROND r   0.63 0.16
  1.1 ESO/MPG GROND i   0.81 0.31
  1.1 ESO/MPG GROND z   1.4 0.35
  1.1 ESO/MPG GROND J   <7.7
081226B 2.7 Swift UVOT B 1414 <14.45   Evans & Hoversten (2008)
090305 0.47 ESO/MPG GROND r   3.0 0.084 Nicuesa Guelbenzu et al. (2012a)
  0.56 ESO/MPG GROND r   3.1 0.27  
  0.56 ESO/MPG GROND i   3.3 0.59  
  0.60 ESO/MPG GROND r   2.9 0.082  
  0.61 Gemini-S GMOS r 900 1.8 0.034 Tunnicliffe et al. (2013)
  0.71 ESO/MPG GROND g   2.1 0.40 Nicuesa Guelbenzu et al. (2012a)
  0.71 ESO/MPG GROND r   2.8 0.35
  0.79 ESO/MPG GROND g   1.9 0.09
  0.92 ESO/MPG GROND g   2.1 0.31
  0.92 ESO/MPG GROND r   2.1 0.32
  0.92 ESO/MPG GROND i   2.5 0.49
  0.93 ESO/MPG GROND g   1.8 0.085
  1.1 ESO/MPG GROND g   1.7 0.11
  1.1 ESO/MPG GROND r   1.9 0.24
  1.2 ESO/MPG GROND r   2.0 0.13
  1.3 Gemini-S GMOS i 900 1.5 0.041 Tunnicliffe et al. (2013)
  1.3 ESO/MPG GROND g   1.6 0.14 Nicuesa Guelbenzu et al. (2012a)
  1.3 ESO/MPG GROND i   1.9 0.24
  1.3 ESO/MPG GROND r   1.5 0.16
  1.4 ESO/MPG GROND r   1.7 0.082
  1.5 ESO/MPG GROND r   1.7 0.34
  1.5 ESO/MPG GROND i   1.9 0.22
  1.6 ESO/MPG GROND r   1.7 0.078
  1.6 Gemini-S GMOS r 900 1.4 0.026 Tunnicliffe et al. (2013)
  1.6 ESO/MPG GROND r   1.8 0.19 Nicuesa Guelbenzu et al. (2012a)
  1.7 ESO/MPG GROND r   1.6 0.073
  1.7 ESO/MPG GROND r   1.5 0.12
  1.8 ESO/MPG GROND r   1.4 0.051
  1.8 ESO/MPG GROND g   1.0 0.13
  1.8 ESO/MPG GROND r   1.5 0.12
  2.0 ESO/MPG GROND r   1.6 0.12
  2.1 ESO/MPG GROND r   1.2 0.35
  2.1 Gemini-S GMOS r 900 0.95 0.027 Tunnicliffe et al. (2013)
  2.1 ESO/MPG GROND r   1.1 0.040 Nicuesa Guelbenzu et al. (2012a)
  21.7 Gemini-S GMOS r 1500 <0.19   Tunnicliffe et al. (2013)
090426 0.29 TNT   R 60 101 7.8 Xin et al. (2011)
  0.31 TNT   R 60 95.1 10.1  
  0.33 TNT   R 60 89.2 9.5  
  0.36 TNT   R 60 77.0 8.2  
  0.38 TNT   R 60 74.9 8.8  
  0.40 TNT   R 60 69.6 8.1  
  0.42 TNT   R 60 73.5 8.6  
  0.53 TNT   V 600 49.0 5.7  
  0.71 TNT   V 600 36.5 4.3  
  0.88 TNT   V 600 34.5 4.0  
  1.1 TNT   V 600 36.2 4.2  
  1.2 TNT   V 600 32.4 3.8  
  1.4 TNT   V 600 31.8 4.4  
  1.6 TNT   V 600 28.7 4.0  
  2.0 TNT   V 600 24.6 3.9  
  2.3 TNT   V 600 20.1 3.4  
  2.6 TNT   V 600 20.8 3.5  
  3.0 TNT   V 600 19.7 3.6  
  7.3 TLS   I   15.8 2.8 Nicuesa Guelbenzu et al. (2011)
  7.5 TLS   R   13.5 1.7  
  7.5 TLS   R   13.4 1.8  
  7.7 TLS   R   11.8 2.3  
  7.8 TLS   R   12.7 1.7  
  12.9 ESO/MPG GROND g 3.1 $\;\times \;{10}^{3}$ 5.8 0.16  
  12.9 ESO/MPG GROND r 3.1 $\;\times \;{10}^{3}$ 7.6 0.21  
  12.9 ESO/MPG GROND i 3.1 $\;\times \;{10}^{3}$ 8.2 0.38  
  12.9 ESO/MPG GROND z 3.1 $\;\times \;{10}^{3}$ 9.8 0.65  
  12.9 ESO/MPG GROND J 3.1 $\;\times \;{10}^{3}$ 15.2 0.28  
  12.9 ESO/MPG GROND H 3.1 $\;\times \;{10}^{3}$ 15.7 3.2  
  12.9 ESO/MPG GROND K 3.1 $\;\times \;{10}^{3}$ <33.3    
  14.6 ESO/MPG GROND g 7.3 $\;\times \;{10}^{3}$ 4.7 0.087  
  14.6 ESO/MPG GROND r 7.3 $\;\times \;{10}^{3}$ 6.0 0.11  
  14.6 ESO/MPG GROND i 7.3 $\;\times \;{10}^{3}$ 7.3 0.20  
  14.6 ESO/MPG GROND z 7.3 $\;\times \;{10}^{3}$ 8.3 0.31  
  14.6 ESO/MPG GROND J 7.3 $\;\times \;{10}^{3}$ 10.2 0.89  
  14.6 ESO/MPG GROND H 7.3 $\;\times \;{10}^{3}$ 11.8 1.4  
  14.6 ESO/MPG GROND K 7.3 $\;\times \;{10}^{3}$ <21.0    
  16.3 LOAO   R 1.8 $\;\times \;{10}^{3}$ <6.6   Xin et al. (2011)
090510c 6.2 ESO/MPG GROND r   5.9 2.5 Nicuesa Guelbenzu et al. (2012b)
  6.3     r   5.5 2.3
  6.3     r   4.6 1.6
  6.4     r   2.6 1.8
  6.4     r   3.0 1.8
  6.5     r   2.6 1.6
  6.7     r   2.3 0.71
  6.8     r   3.8 0.77
  6.9     r   2.7 0.89
  7.1     r   3.4 0.79
  7.2     r   2.9 0.72
  7.3     r   2.2 0.75
  7.4     r   3.1 0.77
  7.6     r   2.3 0.59
  7.7     r   1.9 0.40
  7.8     r   1.9 0.50
  7.9     r   2.2 0.55
  8.1     r   1.8 0.59
  8.2     r   2.0 0.52
  8.3     r   2.0 0.47
  8.4     r   2.1 0.46
  8.6     r   2.3 0.48
  8.6     J   <4.8
  8.7     r   2.0 0.47
  8.8     r   1.9 0.44
  8.9     r   1.5 0.47
  9.1     r   1.7 0.43
  9.2     r   1.3 0.41
  9.3     r   1.5 0.41
  9.5     r   1.5 0.40
  9.7     r   0.88 0.47
  9.8     r   1.2 0.41
090515 1.4 WIYN WHIRC J 2.4 $\;\times \;{10}^{3}$ <39.4   Updike et al. (2009)
  1.7 Gemini-N GMOS r 1.8 $\;\times \;{10}^{3}$ 0.11 0.013 Rowlinson et al. (2010a)
  2.0 MMT MMIRS K 810 <12.0   McLeod & Williams (2009)
  25.0 Gemini-N GMOS r 1.8 $\;\times \;{10}^{3}$ 0.092 0.033 Rowlinson et al. (2010a)
  4.4 $\;\times \;{10}^{3}$ Gemini-N GMOS r 2.8 $\;\times \;{10}^{3}$ <0.042    
090607a 0.52 Faulkes North   R 720 <5.70   Guidorzi et al. (2009)
090621B 0.75 RTT150 TFOSC Rc 900 <1.91   Galeev et al. (2009)
090916 2.7 PROMPT   R 480 <71.4   Haislip et al. (2009)
091109B 6.0 VLT FORS2 R 2400 0.67 0.092 Tunnicliffe et al. (2013)
  7.2 VLT HAWK-I K 1320 <0.85    
  8.3 VLT HAWK-I J 1320 <2.5
  10.4 VLT FORS2 R 1200 0.51 0.11
  31.7 VLT FORS2 R 2400 <0.17
091117 31.5 ESO/MPG GROND J   <7.59   Nicuesa Guelbenzu et al. (2012a)
  31.7 Magellan IMACS r   <0.98   Berger & Mulchaey (2009)
100117A 3.9 Magellan IMACS R 1200 <0.97   Fong et al. (2011)
  4.3 ESO/MPG GROND r   <0.69   Nicuesa Guelbenzu et al. (2012a)
  8.3 Gemini-N GMOS r 2700 0.24 0.05 Fong et al. (2011)
100206A 11.7 ESO/MPG GROND i   <1.8   Nicuesa Guelbenzu et al. (2012a)
  11.7 ESO/MPG GROND J   <9.7    
  15.7 Gemini-N GMOS i 1200 <0.18   Perley et al. (2012)
100625A 12.2 ESO/MPG GROND g ≈3600 <1.32   Nicuesa Guelbenzu et al. (2012a)
  33.9 Magellan PANIC J 2100 <1.0   Fong et al. (2013)
100628A 1.1 Gemini-N GMOS i 1200 <0.85   This work
  17.8 Magellan PANIC J 1620 <5.43    
100702Aa 0.16 ESO/MPG GROND J   <27.29   Nicuesa Guelbenzu et al. (2012a)
  1.7 ESO/MPG GROND r   <1.96  
101219A 0.96 Gemini-S GMOS i 1620 <0.40   Fong et al. (2013)
  1.20 Magellan FourStar J 1500 <1.36    
110112A 15.4 WHT ACAM i 600 2.8 0.75 Fong et al. (2013)
  4.0 $\;\times \;{10}^{3}$ Magellan LDSS3 i 1200 <0.49
110112B 17.0 Swift UVOT white 3600 <5.01   Littlejohns et al. (2011)
110420B 10.5 Magellan IMACS r 1530 <1.4   This work
111020Aa 17.8 Magellan/Clay LDSS3 r 1080 <0.83   Fong et al. (2012b)
  17.8 Gemini-S GMOS i 1620 <0.63    
  18.5 VLT HAWK-I J 2640 <0.57   Tunnicliffe et al. (2013)
111117A 8.2 GTC OSIRIS r 1200 <0.40   Sakamoto et al. (2013)
  13.7 Gemini-S GMOS r 1200 <0.23   Margutti et al. (2012)
120229A 9.6 Magellan/Clay LDSS3 r 540 <4.1   This work
120305A 0.23 Liverpool   r   <25.85   Virgili et al. (2012)
120521Aa 18.6 ESO/MPG GROND r 3000 <0.88   Rossi et al. (2012)
  18.6 ESO/MPG GROND J 2400 <20.9    
120804A 5.5 Gemini-N GMOS i 1980 0.17 0.04 Berger et al. (2013)
120817B 24.0 LCO/duPont WFCCD R 900 <1.5   Fong et al. (2012a)
121226A 11.1 NOT ALFOSC R 1800 <2.1   Xu et al. (2012)
130313Aa 13.4 TNG   r 1800 <0.44   D'Avanzo et al. (2013)
130515A 0.63 Gemini-S GMOS r 240 <1.4   Cenko & Cucchiara (2013)
130603B 0.19 Swift UVOT V 180 <199.5   de Ugarte Postigo et al. (2014)
  2.1 Swift UVOT V 5110 <54.0    
  2.4 Swift UVOT B 7700 17.2 4.5  
  5.9 NOT MOSCA r 1800 12.6 0.23  
  6.1 WHT ACAM z 900 25.4 1.4  
  6.6 WHT ACAM i 900 16.4 0.88  
  6.7 CAHA DLR-MKIII V 1800 8.3 0.73  
  7.0 GTC OSIRIS r 30 11.0 0.20  
  7.1 WHT ACAM g 900 6.3 0.34  
  7.9 Gemini-S GMOS g 1440 5.3 0.19 Cucchiara et al. (2013)
  8.2 Magellan/Baade IMACS r 600 8.6 0.14 Berger et al. (2013)
  9.0 Gemini-S GMOS i 1440 12.3 1.2 Cucchiara et al. (2013)
  14.4 Gemini-N GMOS z 500 6.5 0.18 de Ugarte Postigo et al. (2014)
  14.5 UKIRT WFCAM K 684 13.7 1.3  
  14.6 Gemini-N GMOS i 500 4.5 0.12  
  14.7 UKIRT WFCAM J 500 9.3 1.3  
  14.8 Gemini-N GMOS r 500 2.9 0.081  
  15.0 Gemini-N GMOS g 500 1.6 0.06  
  31.2 Gemini-S GMOS r 540 <0.30   Cucchiara et al. (2013)
  31.2 Gemini-S GMOS i 540 <0.58    
  32.2 Magellan/Baade IMACS r 1200 <0.46   Berger et al. (2013)
  38.2 Gemini-N GMOS g 600 <0.19   de Ugarte Postigo et al. (2014)
  38.4 Gemini-N GMOS r 600 0.21 0.05  
  38.6 Gemini-N GMOS i 600 <0.48    
  38.6 UKIRT WFCAM J 1400 <3.6    
130716A 19.5 Gemini-N GMOS r 900 <0.35   This work
130822A 21.1 Gemini-N GMOS i 600 <0.58   Cenko et al. (2013a)
130912A 0.27 ESO/MPG GROND r   10.5 2.1 Tanga et al. (2013)
  0.38 P60   r   13.0 2.6 Cenko et al. (2013b)
  0.88 P60   r   9.7 2.5  
  20.0 WHT ACAM g   <0.87   Tanvir et al. (2013)
  24.8 Johnson RATIR r 19200 <1.8   Butler et al. (2013)
  24.8 Johnson RATIR i 19200 <1.7    
  24.8 Johnson RATIR Z 8060 <3.7    
  24.8 Johnson RATIR Y 8060 <5.4    
  24.8 Johnson RATIR J 8060 <5.3    
  24.8 Johnson RATIR H 8060 <7.9    
131004A 0.43 NOT ALFOSC R   44.3 4.3 Xu et al. (2013)
  1.1 TNG DOLORES R 60 25.5 2.5 Malesani et al. (2013)
  1.4 Liverpool   i 300 47.4 4.6 Kopac et al. (2013)
  1.9 Liverpool   i 300 32.8 3.2  
  2.8 ESO/MPG GROND g 460 6.0 0.58 Schmidl et al. (2013)
  2.8 ESO/MPG GROND r 460 9.6 0.93  
  2.8 ESO/MPG GROND i 460 13.1 1.3  
  2.8 ESO/MPG GROND z 460 14.0 1.4  
  2.8 ESO/MPG GROND J 480 36.5 7.4  
  2.8 ESO/MPG GROND H 480 34.0 6.9  
  2.8 ESO/MPG GROND K 480 <47.3    
  7.3 Johnson RATIR r 7812 <1.6   Littlejohns et al. (2013)
  7.3 Johnson RATIR i 7812 <1.9    
  7.3 Johnson RATIR Z 3384 <2.9    
  7.3 Johnson RATIR Y 3384 <4.8    
  7.3 Johnson RATIR J 3384 <3.6    
  7.3 Johnson RATIR H 3384 <3.6    
131125Aa 11.8 iPTF   R   <24.9   Singer et al. (2013a)
131126Aa 19.5 iPTF   R   <107.8   Singer et al. (2013b)
140129B 0.032 MASTER II   - 20 7590   Poleshchuk et al. (2014)
  0.053 MASTER II   - 30 3020    
  0.079 MASTER II   - 50 1910    
  0.11 MASTER II   - 70 1450    
  0.15 MASTER II   - 100 692    
  0.20 MASTER II   - 130 525    
  0.26 MASTER II   - 170 363    
  0.33 MASTER II   - 180 275    
  0.43 MASTER II   - 360 191    
140320A 32.9 Johnson RATIR r 5040 <10.7   Littlejohns et al. (2014)
  32.9 Johnson RATIR i 5040 <10.4    
  32.9 Johnson RATIR Z 2016 <24.3    
  32.9 Johnson RATIR Y 2016 <20.2    
  32.9 Johnson RATIR J 2016 <25.3    
  32.9 Johnson RATIR H 2016 <37.3    
140402Aa 29.0 Magellan/Baade IMACS r 900 <0.36   This work
140414A 15.2 TNG DOLORES r 1800 <5.9   D'Avanzo et al. (2014b)
140516A 1.6 TNG DOLORES r 720 <2.38   D'Avanzo et al. (2014c)
  1.8 NOT ALFOSC R 3900 <0.50   Gorosabel et al. (2014b)
  11.6 Subaru IRCS+AO188 K' 5880 <0.84   Minowa et al. (2014)
  12.4 Gemini-N GMOS i 1800 <0.14   This work
  13.0 Johnson RATIR J 3200 <5.8   Butler et al. (2014)
140606A 7.3 AAO   R 120 <6.46   Volnova et al. (2014)
140619Ba 35.5 Magellan/Baade Fourstar J 770 <2.54   This work
140622A 0.07 ESO/MPG GROND r   <0.80   Tanga et al. (2014)
  0.07 ESO/MPG GROND J   <11.4    
140903Aa 12.2 DCT LMI r   7.6 3.1 Cenko et al. (2014)
140930B 3.0 WHT ACAM r   7.4 Tanvir et al. (2014)
  7.3 ESO/MPG GROND r   2.0 0.41 Graham et al. (2014)
  7.8 Magellan/Baade IMACS i 900 2.2 0.30 This work
  7.8 MMT MMTCam r 1200 0.97 0.20 This work
  13.1 Keck MOSFIRE Ks 315 3.1 0.97 Perley & Jencson (2014)
  13.3 Keck MOSFIRE J 396 2.1 0.43  
141205A 11.4 Nanshan   R   <33.2   Xu et al. (2014)
141212A 5.4 CAHA 1.23 m   I   <11.1   Gorosabel et al. (2014a)
150101B 39.8 Magellan/Baade IMACS r 1200 2.26 0.34 Fong et al., in prep.
  63.6 Magellan/Baade IMACS r 1200 1.4 0.38 .
  231 TNG NICS J   <7.59   D'Avanzo et al. (2015)
  257 Gemini-South GMOS r 1710 <0.76   Fong et al., in prep.
  349 TNG NICS J   <3.98   D'Avanzo et al. (2015)
  ∼360 VLT HAWK-I H   <1.45   van der Horst et al. (2015)
  694 Magellan/Baade IMACS r 1200 <0.53   Fong et al., in prep.
150120A 2.0 Gemini-North GMOS r 1800 <0.36   This work

Notes. Upper limits correspond to 3σ. All optical and near-IR fluxes are corrected for Galactic extinction in the directions of each bursts (Schlegel et al. 1998; Schlafly & Finkbeiner 2011). Instruments, exposure times, and flux density uncertainties are provided whenever available.

aOptical observing constraint, due to delayed precise localization, sightline with high Galactic extinction, crowded field, or proximity to a bright star that contaminates the GRB position. bOptical re-brightening observed in GRB 080503 is unlikely the afterglow (Perley et al. 2009b). cFull simultaneous giz-band light curves are available in Nicuesa Guelbenzu et al. (2012b).

Download table as:  ASCIITypeset images: 1 2 3 4 5 6 7 8

Table 8.  Short GRB Radio afterglow Catalog

GRB δt Facility Mean Frequency Fν σ References
  (dy)   (GHz) (μJy) (μJy)  
050202 0.52 VLA 4.86 <120   Frail & Soderberg (2005)
050509B 0.49 WSRT 4.86 <66   van der Horst et al. (2005)
050709 1.6 VLA 8.46 <115   Fox et al. (2005)
  2.5 VLA 8.46 <114    
  4.5 VLA 8.46 <74    
  7.5 VLA 8.46 <40    
050724A 0.57 VLA 8.46 173 30 Berger et al. (2005)
  1.68 VLA 8.46 465 29
  9.10 VLA 8.46 <259   Panaitescu (2006)
050813 1.64 VLA 8.46 <55   Cameron & Frail (2005a)
050906 3.91 VLA 8.46 <92   Cameron & Frail (2005b)
050925 0.40 WSRT 4.9 <72   van der Horst (2005)
051105A 0.54 VLA 8.5 <51   Frail & Cameron (2005)
051221A 0.91 VLA 8.46 155 30 Soderberg et al. (2006)
  1.94 VLA 8.46 <72    
060313 2.12 VLA 8.46 <110   Soderberg & Frail (2006)
060801 0.49 VLA 8.46 <105   Soderberg et al. (2006)
  1.2 WSRT 4.9 <72   van der Horst (2006)
  5.2 WSRT 4.9 <81  
061210 1.9 VLA 8.46 <102   Chandra & Frail (2006)
070429B 0.59 VLA 8.46 <300   Chandra & Frail (2007b)
070714B 15.6 VLA 8.46 <135   Chandra & Frail (2007d)
070724A 1.06 VLA 8.46 <255   Chandra & Frail (2007a)
070729 9.49 VLA 8.46 <255   Chandra & Frail (2007e)
070923 4.98 VLA 8.46 <135   Chandra & Frail (2007c)
071112B 1.69 ATCA 8.7 <141   Wieringa et al. (2007)
080503 3.05 VLA 8.46 <54   Frail & Chandra (2008)
080702A 0.74 VLA 8.46 <156   Chandra & Frail (2008b)
081024A 1.03 VLA 8.46 <156   Chandra & Frail (2008a)
081024B 4.1 VLA 8.46 <114   Chandra et al. (2008)
081226A 58.9 ATCA 4.9 <540   Moin et al. (2009a)
081226B 58.4 ATCA 4.9 <588   Moin et al. (2009b)
090417A 0.37 VLA 8.46 <72   Chandra & Frail (2009)
090510 1.98 VLA 8.46 <84   Frail & Chandra (2009)
090515 0.87 VLA 8.46 <60   Berger & Fong (2009a)
090621B 0.61 VLA 8.46 <54   Berger & Fong (2009c)
090715A 1.25 VLA 8.46 <64   Berger & Fong (2009d)
091117 2.33 VLA 8.46 <120   Berger & Fong (2009b)
100625A 0.83 VLA 4.90 <192   This work
100628A 0.77 VLA 5.8 <291   This work
101224A 3.72 VLA 5.8 <56   This work
110112A 1.87 VLA 5.0 <75   This work
110112B 0.85 VLA 5.8 <51   This work
  1.80 VLA 5.8 <66  
  2.92 VLA 5.8 <48
  12.10 VLA 5.8 <36
110420B 0.65 VLA 4.90 <77   This work
  7.65 VLA 5.8 <116
111020A 0.67 VLA 5.8 <39   Fong et al. (2012b)
111117A 0.49 VLA 5.8 <18   Margutti et al. (2012)
111121A 0.84 VLA 5.8 <100   This work
120229A 0.38 VLA 5.8 <54   This work
  3.32 VLA 5.8 <66  
120305A 0.16 VLA 5.8 <18   This work
  2.25 VLA 5.8 <18
120521A 1.08 ATCA 34 <95   Hancock et al. (2012a)
120804A 0.9 VLA 5.8 <20   Berger et al. (2013)
  2.2 ATCA 34 <200   Hancock et al. (2012b)
  4.2 ATCA 34 <120  
121226A 1.75 VLA 5.8 <30   This work
  4.76 VLA 5.8 <45    
130313A 0.77 VLA 5.8 <60   This work
130603B 0.37 VLA 4.9 125 14.4 Fong et al. (2014)
  0.37 VLA 6.7 119 9.1
  1.43 VLA 4.9 <57
  1.43 VLA 6.7 64.9 15.2
  1.44 VLA 21.8 <50
  4.32 VLA 4.9 <51
  4.32 VLA 6.7 <26
  84.31 VLA 4.9 <69
  84.31 VLA 6.7 <34
130716A 2.51 VLA 5.8 <33   This work
130822A 15.9 VLA 5.8 <30   This work
130912A 0.91 VLA 5.8 <29   This work
  3.10 VLA 5.8 <42
131004A 0.14 CARMA 93 <300   This work
131224A 0.20 VLA 6.0 <33   This work
  2.27 VLA 6.0 <33    
140516A 0.62 VLA 6.0 <24   This work
  4.67 VLA 6.0 <21  
140619B 1.51 VLA 6.0 <36   This work
140622A 3.09 VLA 6.0 <36   This work
140903A 0.40 VLA 6.0 110 9.5 This work
  2.45 VLA 6.0 187 8.7
  2.45 VLA 9.8 151 8.9
  4.70 VLA 6.0 128 15.1
  7.42 GMRT 1.39 102 33 Nayana & Chandra (2014)
  9.24 VLA 6.0 81.9 14.7 This work
  9.24 VLA 9.8 <69
  18.24 VLA 6.0 <120
140930B 0.29 VLA 9.8 <25.5   This work
  3.27 VLA 9.8 <24.4
141212A 0.45 VLA 6.0 <25.2   This work
  3.76 VLA 6.0 27.0 8.1
  7.72 VLA 6.0 21.9 8.3
  7.72 VLA 9.8 21.3 6.4
  76.49 VLA 6.0 <19.5    
150101A 1.43 VLA 9.8 <48.6   This work
150101B 5.73 VLA 9.8 <375   Fong et al., in prep.
150120A 0.90 VLA 9.8 <29.6   This work

Note. For bursts with multiple contemporaneous upper limits, we only display the most constraining limits. Upper limits are 3σ.

Download table as:  ASCIITypeset images: 1 2 3

Footnotes

Please wait… references are loading.
10.1088/0004-637X/815/2/102