skip to main content
research-article

An adaptive point sampler on a regular lattice

Published:20 July 2017Publication History
Skip Abstract Section

Abstract

We present a framework to distribute point samples with controlled spectral properties using a regular lattice of tiles with a single sample per tile. We employ a word-based identification scheme to identify individual tiles in the lattice. Our scheme is recursive, permitting tiles to be subdivided into smaller tiles that use the same set of IDs. The corresponding framework offers a very simple setup for optimization towards different spectral properties. Small lookup tables are sufficient to store all the information needed to produce different point sets. For blue noise with varying densities, we employ the bit-reversal principle to recursively traverse sub-tiles. Our framework is also capable of delivering multi-class blue noise samples. It is well-suited for different sampling scenarios in rendering, including area-light sampling (uniform and adaptive), and importance sampling. Other applications include stippling and distributing objects.

Skip Supplemental Material Section

Supplemental Material

papers-0006.mp4

mp4

369.7 MB

References

  1. A. G. M. Ahmed, J. Guo, D. M. Yan, J. Y. Franceschi, X. Zhang, and O. Deussen. 2016. A Simple Push-Pull Algorithm for Blue-Noise Sampling. IEEE Transactions on Visualization and Computer Graphics (2016). preprint.Google ScholarGoogle Scholar
  2. Abdalla G. M. Ahmed, Hui Huang, and Oliver Deussen. 2015. AA Patterns for Point Sets with Controlled Spectral Properties. ACM Trans. Graph. 34, 6, Article 212 (2015), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Abdalla G. M. Ahmed, Hélène Perrier, David Coeurjolly, Victor Ostromoukhov, Jianwei Guo, Dong-Ming Yan, Hui Huang, and Oliver Deussen. 2016. Low-Discrepancy Blue Noise Sampling. ACM Trans. Graph. 35, 6, Article 247 (Nov. 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Jean-Paul Allouche and Jeffrey Shallit. 1999. The ubiquitous prouhet-thue-morse sequence. In Sequences and their applications. Springer, 1--16. Google ScholarGoogle ScholarCross RefCross Ref
  5. Michael Balzer, Thomas Schlömer, and Oliver Deussen. 2009. Capacity-Constrained Point Distributions: A Variant of Lloyd's Method. ACM Trans. Graph. 28, 3 (2009), 86:1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Bayer. 1973. An optimum method for two-level rendition of continuous-tone pictures. In IEEE International Conference on Communications, Vol. 1. 11--15.Google ScholarGoogle Scholar
  7. Gwyneth A. Bradbury, Kartic Subr, Charalampos Koniaris, Kenny Mitchell, and Tim Weyrich. 2015. Guided Ecological Simulation for Artistic Editing of Plant Distributions in Natural Scenes. Journal of Computer Graphics Techniques (JCGT) 4, 4 (19 Nov. 2015), 28--53.Google ScholarGoogle Scholar
  8. Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. 2003. Wang Tiles for Image and Texture Generation. In ACM SIGGRAPH Conference proceedings. 287--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Robert L. Cook. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1 (1986), 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun. 2012. Blue Noise Through Optimal Transport. ACM Trans. Graph. 31, 6, Article 171 (2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mark A. Z. Dippé and Erling Henry Wold. 1985. Antialiasing Through Stochastic Sampling. SIGGRAPH Comput. Graph. 19, 3 (July 1985), 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fredo Durand. 2011. A Frequency Analysis of Monte Carlo and Other Numerical Integration Schemes. MIT CSAIL Tech. rep. TR-2011--052 (2011).Google ScholarGoogle Scholar
  13. Raanan Fattal. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. 30, 3 (2011), 48:1--48:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Andrew S Glassner. 1995. Principles of digital image synthesis. Vol. 1. Elsevier.Google ScholarGoogle Scholar
  15. Leonhard Grünschloß, Matthias Raab, and Alexander Keller. 2012. Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer Berlin Heidelberg, Chapter Enumerating Quasi-Monte Carlo Point Sequences in Elementary Intervals, 399--408.Google ScholarGoogle Scholar
  16. Daniel Heck, Thomas Schlömer, and Oliver Deussen. 2013. Blue Noise Sampling with Controlled Aliasing. ACM Trans. Graph. 32, 3, Article 25 (July 2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. 2015. Blue Noise Sampling Using an SPH-based Method. ACM Trans. Graph. 34, 6, Article 211 (2015), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Alexander Keller. 2012. Quasi-Monte Carlo Image Synthesis in a Nutshell. Monte Carlo and Quasi-Monte Carlo Methods (2012), 213--252.Google ScholarGoogle Scholar
  19. Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. 2006. Recursive Wang Tiles for Real-time Blue Noise. ACM Trans. Graph. 25, 3 (2006), 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ares Lagae and Philip Dutré. 2006. An Alternative for Wang Tiles: Colored Edges Versus Colored Corners. ACM Trans. Graph. 25, 4 (2006), 1442--1459. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ares Lagae and Philip Dutré. 2008. A Comparison of Methods for Generating Poisson Disk Distributions. Computer Graphics Forum 27, 1 (2008), 114--129. Google ScholarGoogle ScholarCross RefCross Ref
  22. S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 2 (1982), 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Lothaire. 2002. Algebraic Combinatorics on Words. Cambridge University Press. https://books.google.de/books?id=JcJniBQ2dD4C Google ScholarGoogle ScholarCross RefCross Ref
  24. Michael McCool and Eugene Fiume. 1992. Hierarchical Poisson Disk Sampling Distributions. In Proceedings of the Conference on Graphics Interface '92. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 94--105. http://dl.acm.org/citation.cfm?id=155294.155306Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Victor Ostromoukhov. 2007. Sampling with Polyominoes. ACM Trans. Graph. 26, 3 (2007), 78:1--78:6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3 (2004), 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Cengiz Öztireli. 2016. Integration with Stochastic Point Processes. ACM Trans. Graph. 35, 5, Article 160 (Aug. 2016), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Cengiz Öztireli and Markus Gross. 2012. Analysis and Synthesis of Point Distributions Based on Pair Correlation. ACM Trans. Graph. 31, 6, Article 170 (2012), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Matt Pharr and Greg Humphreys. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation (2nd ed.). Morgan Kaufmann Publishers Inc.Google ScholarGoogle Scholar
  30. Adrien Pilleboue, Gurprit Singh, David Coeurjolly, Michael Kazhdan, and Victor Ostromoukhov. 2015. Variance Analysis for Monte Carlo Integration. ACM Trans. Graph. 34, 4, Article 124 (July 2015), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ravi Ramamoorthi, John Anderson, Mark Meyer, and Derek Nowrouzezahrai. 2012. A Theory of Monte Carlo Visibility Sampling. ACM Trans. Graph. 31, 5, Article 121 (2012), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yuki Saka, Max Gunzburger, and John Burkardt. 2007. Latinized, improved LHS, and CVT point sets in hypercubes. International Journal of Numerical Analysis and Modeling 4, 3--4 (2007), 729--743.Google ScholarGoogle Scholar
  33. Thomas Schlömer, Daniel Heck, and Oliver Deussen. 2011. Farthest-point Optimized Point Sets with Maximized Minimum Distance. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics. 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Adrian Secord. 2002. Weighted Voronoi Stippling. In Proceedings of the 2Nd International Symposium on Non-photorealistic Animation and Rendering (NPAR '02). 37--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Kartic Subr and Jan Kautz. 2013. Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration. ACM Trans. Graph. 32, 4, Article 128 (2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Robert Ulichney. 1987. Digital Halftoning. MIT Press, Cambridge, MA, USA.Google ScholarGoogle Scholar
  37. R.A. Ulichney. 1988. Dithering with Blue Noise. Proc. IEEE 76, 1 (1988), 56--79. Google ScholarGoogle ScholarCross RefCross Ref
  38. Robert A Ulichney. 1993. Void-and-Cluster Method for Dither Array Generation. In IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology. International Society for Optics and Photonics, 332--343.Google ScholarGoogle Scholar
  39. Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit Singh, Gaël Cathelin, Fernando de Goes, Mathieu Desbrun, and Victor Ostromoukhov. 2014. Fast Tile-based Adaptive Sampling with User-specified Fourier Spectra. ACM Trans. Graph. 33, 4, Article 56 (July 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Li-Yi Wei. 2010. Multi-class Blue Noise Sampling. ACM Trans. Graph. 29, 4 (2010), 79:1--79:8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Dong-Ming Yan, Bruno Lévy, Yang Liu, Feng Sun, and Wenping Wang. 2009. Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram. Computer Graphics Forum 28, 5 (2009), 1445--1454. Google ScholarGoogle ScholarCross RefCross Ref
  42. Yahan Zhou, Haibin Huang, Li-Yi Wei, and Rui Wang. 2012. Point Sampling with General Noise Spectrum. ACM Trans. Graph. 31, 4, Article 76 (2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An adaptive point sampler on a regular lattice

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 36, Issue 4
      August 2017
      2155 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3072959
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 July 2017
      Published in tog Volume 36, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader