多源条件下直流电阻率法有限元三维数值模拟中一种近似边界条件

张钱江, 戴世坤, 陈龙伟, 强建科, 李昆, 赵东东. 多源条件下直流电阻率法有限元三维数值模拟中一种近似边界条件[J]. 地球物理学报, 2016, 59(9): 3448-3458, doi: 10.6038/cjg20160927
引用本文: 张钱江, 戴世坤, 陈龙伟, 强建科, 李昆, 赵东东. 多源条件下直流电阻率法有限元三维数值模拟中一种近似边界条件[J]. 地球物理学报, 2016, 59(9): 3448-3458, doi: 10.6038/cjg20160927
ZHANG Qian-Jiang, DAI Shi-Kun, CHEN Long-Wei, QIANG Jian-Ke, LI Kun, ZHAO Dong-Dong. An approximate boundary condition for FEM-based 3-D numerical simulation with multi-source direct current resistivity method[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(9): 3448-3458, doi: 10.6038/cjg20160927
Citation: ZHANG Qian-Jiang, DAI Shi-Kun, CHEN Long-Wei, QIANG Jian-Ke, LI Kun, ZHAO Dong-Dong. An approximate boundary condition for FEM-based 3-D numerical simulation with multi-source direct current resistivity method[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(9): 3448-3458, doi: 10.6038/cjg20160927

多源条件下直流电阻率法有限元三维数值模拟中一种近似边界条件

详细信息
    作者简介:

    张钱江,男,1985年生,博士研究生,主要从事地球物理数值模拟与反演成像研究.E-mail:qjz2013@csu.edu.cn

    通讯作者: 戴世坤,男,1964年生,教授,博士生导师,研究方向为电法勘探三维高效反演成像算法及其实用化软件开发.E-mail:dskgmes@csu,edu,cn
  • 中图分类号: P631

An approximate boundary condition for FEM-based 3-D numerical simulation with multi-source direct current resistivity method

More Information
    Corresponding author: DAI Shi-Kun
  • 在多源直流电阻率法有限元三维数值模拟中,传统混合边界条件由于刚度矩阵与源点位置相关,无法实现线性方程组的快速回代求解,目前常用齐次边界条件或无限元边界进行替代,虽然实现了快速回代求解,但同时也降低了数值模拟的精度.为了实现快速回代求解,并确保数值模拟的计算精度,本文提出了一种近似边界条件方法.其核心思想是将与场源位置相关的边界系数矩阵从刚度矩阵中分离出来,使得分离后的刚度矩阵与场源位置无关.并将边界系数矩阵与边界处一次电场向量的乘积移到线性方程组右端源项中,当场源位置发生改变时,只需要重新计算右端源项就可以实现快速回代求解.理论模型数值计算表明,在水平地形条件下,本文边界条件数值精度优于混合边界条件;在起伏地形条件下,与齐次边界条件相比,本文边界条件数值结果与混合边界条件吻合度更高.
  • 加载中
  • [1]

    Ajiz M A, Jennings A. 1984. A robust incomplete Choleski-conjugate gradient algorithm. Int. J. Numer. Meth. Eng., 20(5):949-966.

    [2]

    Anderson W L. 1989. A hybrid fast hankel transform algorithm for electromagnetic modeling. Geophysics, 54(2):263-266.

    [3]

    Arunwan T R, Siripunvaraporn W. 2010. An efficient modified hierarchical domain decomposition for two-dimensional magnetotelluric forward modeling. Geophys. J. Int., 183(2):634-644.

    [4]

    Blome M, Maurer H R, Schmidt K. 2009. Advances in three-dimensional geoelectric forward solver techniques. Geophys. J. Int., 176(3):740-752.

    [5]

    Davis T A. 2006. Direct Methods for Sparse Linear Systems. Philadelphia:SIAM.

    [6]

    Dey A, Morrison H F. 1979. Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics, 44(4):753-780.

    [7]

    Ellis R G, Oldenberg D W. 1994. The pole-pole 3-D DC-resistivity inverse problem:a conjugate gradient approach. Geophys. J. Int., 119(1):187-194.

    [8]

    Grayver A V, Streich R, Ritter O. 2013. Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver. Geophys. J. Int., 193(3):1432-1446.

    [9]

    Guptasarma D, Singh B. 1997. New digital linear filters for Hankel J0 and J1 transforms. Geophysical Prospecting, 45(5):745-762.

    [10]

    Han B, Hu X Y, Huang Y F, et al. 2015. 3-D frequency-domain CSEM modeling using a parallel direct solver. Chinese J. Geophys. (in Chinese), 58(8):2812-2826, doi:10.6038/cjg20150816.

    [11]

    Huang J G, Ruan B Y, Bao G S. 2003. Finite element method for IP Modeling on 3-D Geoelectric Section. Earth Science-Journal of China University of Geosciences (in Chinese), 28(3):323-326.

    [12]

    Li J M. 2005. Geoelectric Field and Electrical Exploration (in Chinese). Beijing:Geological Publishing House, 136-212.

    [13]

    Li Y G, Spitzer K. 2002. Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions. Geophys. J. Int., 151(3):924-934.

    [14]

    Liu J W H. 1992. The Multifrontal Method for Sparse Matrix Solution:Theory and Practice. SIAM Rev., 34(1):82-109.

    [15]

    Loke M H, Barker R D. 1996. Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting, 44(3):499-523.

    [16]

    Loke M H, Chambers J E, Rucker D F, et al. 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95:135-156.

    [17]

    Lowry T, Allen M B, Shive P N. 1989. Singularity removal:a refinement of resistivity modeling techniques. Geophysics, 54(6):766-774.

    [18]

    Nyquist J E, Roth M J S. 2005. Improved 3D pole-dipole resistivity surveys using radial measurement pairs. Geophysical Research Letters, 32:L21416, doi:10.1029/2005GL024153.

    [19]

    Oldenburg D W, Haber E, Shekhtman R. 2008. Forward modelling and inversion of multi-source TEM data.//78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 559-563.

    [20]

    Qiang J K, Luo Y Z. 2007. The resistivity FEM numerical modeling on 3-D undulating topography. Chinese J. Geophys. (in Chinese), 50(5):1606-1613.

    [21]

    Ruan B Y, Xiong B, Xu S Z. 2001. Finite element method for modeling resistivity sounding on 3-D geoelectric section. Earth Science-Journal of China University of Geosciences (in Chinese), 26(1):73-77.

    [22]

    Rucker D F, Loke M H, Levitt M T, et al. 2010. Electrical-resistivity characterization of an industrial site using long electrodes. Geophysics, 75(4):WA95-WA104.

    [23]

    Saad Y. 1996. Iterative Methods for Sparse Linear Systems. Boston:PWS Pub. Co.

    [24]

    Saad Y, Vorst H A D. 2000. Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math., 123(1-2):1-33.

    [25]

    Schenk O, Gärtner K, Fichtner W, et al. 2001. PARDISO:a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Future Generat. Comput. Syst., 18(1):69-78.

    [26]

    Schwarzbach C, Haber E. 2013. Finite element based inversion for time-harmonic electromagnetic problems. Geophys. J. Int., 193(2):615-634.

    [27]

    Spitzer K. 1995. A 3-D finite-difference algorithm for dc resistivity modelling using conjugate gradient methods. Geophys. J. Int., 123(3):903-914.

    [28]

    Tang J T, Gong J Z. 2010. 3D DC resistivity forward modeling by finite-infinite element coupling method. Chinese J. Geophys. (in Chinese), 53(3):717-728, doi:10.3969/j.issn.0001-5733.2010.03.027.

    [29]

    White R M S, Collins S, Denne R, et al. 2001. A new survey design for 3D IP inversion modelling at Copper hill. Exploration Geophysics, 32(4):152-155.

    [30]

    Wu X P, Xu G M. 2000. Study on 3-D resistivity inversion using conjugate gradient method. Chinese J. Geophys. (in Chinese), 43(3):420-427.

    [31]

    Wu X P, Xiao Y F, Qi C, et al. 2003. Computations of secondary potential for 3D DC resistivity modelling using an incomplete Choleski conjugate-gradient method. Geophysical Prospecting, 51(6):567-577.

    [32]

    Wu X P, Wang T T. 2003. A 3-D finite-element resistivity forward modeling using conjugate gradient algorithm. Chinese J. Geophys. (in Chinese), 46(3):428-432.

    [33]

    Wu X P, Liu Y, Wang W. 2015. 3D resistivity inversion incorporating topography based on unstructured meshes.Chinese J. Geophys. (in Chinese), 58(8):2706-2717, doi:10.6038/cjg20150808.

    [34]

    Xiong B, Ruan B Y, Luo Y Z. 2003. 3-D numerical simulation study of DC resistivity anomaly under complicated terrain. Geology and Prospecting (in Chinese), 39(4):60-64.

    [35]

    Xu S Z. 1994. The Finite Element Method in Geophysics (in Chinese). Beijing:Science Press, 159-172.

    [36]

    Yang D K, Oldenburg D W. 2012. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit. Geophysics, 77(2):B23-B34.

    [37]

    Yang J, Liu Y, Wu X P. 2015. 3D simulation of marine CSEM using vector finite element method on unstructured grids. Chinese J. Geophys. (in Chinese), 58(8):2827-2838, doi:10.6038/cjg20150817.

    [38]

    Zhang J, Mackie R L, Madden T R. 1995. 3-D resistivity forward modeling and inversion using conjugate gradients. Geophysics, 60(5):1313-1325.

    [39]

    Zhao S K, Yedlin M J. 1996. Some refinements on the finite-difference method for 3-D DC resistivity modeling. Geophysics, 61(5):1301-1307.

    [40]

    Zhou B, Greenhalgh S A. 2001. Finite element three-dimensional direct current resistivity modelling:accuracy and efficiency considerations. Geophys. J. Int., 145(3):679-688.

    [41]

    韩波, 胡祥云, 黄一凡等. 2015. 基于并行化直接解法的频率域可控源电磁三维正演. 地球物理学报, 58(8):2812-2826, doi:10.6038/cjg20150816.

    [42]

    黄俊革, 阮百尧, 鲍光淑. 2003. 三维地电断面激发极化法有限元数值模拟. 地球科学-中国地质大学学报, 28(3):323-326.

    [43]

    李金铭. 2005. 地电场与电法勘探. 北京:地质出版社, 136-212.

    [44]

    强建科, 罗延钟. 2007. 三维地形直流电阻率有限元法模拟. 地球物理学报, 50(5):1606-1613.

    [45]

    阮百尧, 熊彬, 徐世浙. 2001. 三维地电断面电阻率测深有限元数值模拟. 地球科学-中国地质大学学报, 26(1):73-77.

    [46]

    汤井田, 公劲喆. 2010. 三维直流电阻率有限元-无限元耦合数值模拟. 地球物理学报, 53(3):717-728, doi:10.3969/j.issn.0001-5733.2010.03.027.

    [47]

    吴小平, 徐果明. 2000. 利用共轭梯度法的电阻率三维反演研究. 地球物理学报, 43(3):420-427.

    [48]

    吴小平, 汪彤彤. 2003. 利用共轭梯度算法的电阻率三维有限元正演. 地球物理学报, 46(3):428-432.

    [49]

    吴小平, 刘洋, 王威. 2015. 基于非结构网格的电阻率三维带地形反演. 地球物理学报, 58(8):2706-2717, doi:10.6038/cjg20150808.

    [50]

    熊彬, 阮百尧, 罗延钟. 2003. 复杂地形条件下直流电阻率异常三维数值模拟研究. 地质与勘探, 39(4):60-64.

    [51]

    徐世浙. 1994. 地球物理中的有限单元法. 北京:科学出版社, 159-172.

    [52]

    杨军, 刘颖, 吴小平. 2015. 海洋可控源电磁三维非结构矢量有限元数值模拟. 地球物理学报, 58(8):2827-2838, doi:10.6038/cjg20150817.

  • 加载中
计量
  • 文章访问数:  1792
  • PDF下载数:  2266
  • 施引文献:  0
出版历程
收稿日期:  2015-12-08
修回日期:  2016-04-14
上线日期:  2016-09-05

目录