气溶胶对雷暴云电过程影响的数值模拟研究

谭涌波, 马肖, 向春燕, 夏艳羚, 张鑫. 2017. 气溶胶对雷暴云电过程影响的数值模拟研究. 地球物理学报, 60(8): 3041-3050, doi: 10.6038/cjg20170812
引用本文: 谭涌波, 马肖, 向春燕, 夏艳羚, 张鑫. 2017. 气溶胶对雷暴云电过程影响的数值模拟研究. 地球物理学报, 60(8): 3041-3050, doi: 10.6038/cjg20170812
TAN Yong-Bo, MA Xiao, XIANG Chun-Yan, XIA Yan-Ling, ZHANG Xin. 2017. A numerical study of the effects of aerosol on electrification and lightning discharges during thunderstorms. Chinese Journal of Geophysics (in Chinese), 60(8): 3041-3050, doi: 10.6038/cjg20170812
Citation: TAN Yong-Bo, MA Xiao, XIANG Chun-Yan, XIA Yan-Ling, ZHANG Xin. 2017. A numerical study of the effects of aerosol on electrification and lightning discharges during thunderstorms. Chinese Journal of Geophysics (in Chinese), 60(8): 3041-3050, doi: 10.6038/cjg20170812

气溶胶对雷暴云电过程影响的数值模拟研究

  • 基金项目:

    国家自然科学基金项目(41475006),国家重点基础研究发展计划(973计划)项目(2014CB441403)联合资助

详细信息
    作者简介:

    谭涌波, 男, 1977年生, 副研究员, 1999年毕业于中国科学技术大学, 2006年获中国科学技术大学理学博士, 主要从事大气电学的理论和模拟研究.E-mail:ybtan@ustc.edu

  • 中图分类号: P401

A numerical study of the effects of aerosol on electrification and lightning discharges during thunderstorms

  • 本文在已有的三维雷暴云起、放电模式中加入了一种经典的气溶胶活化参数化方案,结合一次长春雷暴个例,进行了雷暴云起放电数值模拟试验.研究显示气溶胶浓度改变对雷暴云微物理、起电及放电过程都有重要影响.结果表明:(1)污染型雷暴云中气溶胶浓度增加时,云滴数目增多,上升风速加强;云中冰晶与霰粒子数浓度增加但尺度减小;(2)相对于清洁型雷暴云,污染型雷暴云非感应起电过程弱,感应起电过程强,起电持续时间长;(3)污染型雷暴云中首次放电时间延迟,闪电持续发生的时间长,总闪电频次增加,正地闪频次增加明显.

  • 加载中
  • 图 1 

    气溶胶数浓度垂直分布

    Figure 1. 

    Vertical distribution of the aerosol concentration

    图 2 

    模式所采用的环境层结曲线(a)以及垂直风廓线(b)

    Figure 2. 

    Environmental stratification curve (a) and vertical wind profile (b)

    图 3 

    两次个例中最大上升风速(w)与最大云水含量(Qc)随时间变化分布

    Figure 3. 

    Spatial and temporal distributions of the peak updrafts (w) and maximum of knot content (Qc) in the two cases

    图 4 

    两次个例中水成物粒子最大混合比(Q)与最大数浓度(H)随时间变化分布

    Figure 4. 

    Spatial and temporal distributions of the largest mixing ratio (Q) and the concentration of numbers of hydrometeors (H) in the two cases

    图 5 

    两次个例最大非感应起电率随时间的变化

    Figure 5. 

    The largest non-inductive electrification rate for every minute in the two cases

    图 6 

    两次个例中最大感应起电率(Qgc)随时间的变化

    Figure 6. 

    The largest inductive electrification rate (Qgc) for every minute in the two cases

    图 7 

    两次个例中闪电发生率随时间的变化

    Figure 7. 

    Estimated flash rate related to aerosol concentration in the two cases

    图 8 

    两次个例59 min模拟的空间电荷结构垂直剖面分布

    Figure 8. 

    The charge distribution in the two cases at 59 min

    图 9 

    59 min时刻污染型个例中空间闪电通道结构图

    Figure 9. 

    The lightning leader distribution of the polluted thunderclouds at 59 min

  •  

    Baral K N, Mackerras D. 1992. The cloud flash-to-ground flash ratio and other lightning occurrence characteristics in Kathmandu thunderstorms. Journal of Geophysical Research: Atmospheres, 97(D1): 931-938, doi: 10.1029/91JD02039.

     

    Brook M, Nakano M, Krehbiel P, et al. 1982. The electrical structure of the Hokuriku winter thunderstorm. Journal of Geophysical Research: Atmospheres, 87(C2): 1207-1215, doi: 10.1029/JC087iC02p01207.

     

    Coleman L M, Marshall T C, Stolzenburg M, et al. 2003. Effects of charge and electrostatic potential on lightning propagation. Journal of Geophysical Research: Atmospheres, 108(D9): 4298. http://onlinelibrary.wiley.com/doi/10.1029/2002JD002718/full

     

    Hu Z J, He G F. 1987. Numerical simulations of cumulonimbus dynamic process Ⅰ: microphysical model. Acta Meteorologica Sinica (in Chinese), 45(4): 467-484. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB198704011.htm

     

    Kar S K, Liou Y A, Ha K J. 2009. Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmospheric Research, 92(1): 80-87, doi: 10.1016/j.atmosres.2008.09.004.

     

    Li G H, Wang Y, Zhang R Y. 2008. Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction. Journal of Geophysical Research: Atmospheres, 113(D15): D15211, doi: 10.1029/2007JD009361.

     

    Lyons W A, Uliasz M, Nelson T E. 1998. Large peak current cloud-to-ground lightning flashes during the summer months in the contiguous United States. Monthly Weather Review, 126(8): 2217-2233, doi: 10.1175/1520-0493(1998)126<2217:LPCCTG>2.0.CO; 2.

     

    Mackerras D. 1985. Automatic short-range measurement of the cloud flash to ground flash ratio in thunderstorms. Journal of Geophysical Research: Atmospheres, 90(D4): 6195-6201, doi: 10.1029/JD090iD04p06195.

     

    Mansell E R, MacGorman D R, Ziegler C L, et al. 2002. Simulated three-dimensional branched lightning in a numerical thunderstorm model. Journal of Geophysical Research: Atmospheres, 107(D9): ACL 2-1-ACL 2-12, doi: 10.1029/2000JD000244.

     

    Mansell E R, Macgorman D R, Ziegler C L, et al. 2005. Charge structure and lightning sensitivity in a simulated multicell thunderstorm. Journal of Geophysical Research Atmospheres, 110(D12): D12101, doi: 10.1029/2004JD005287.

     

    Mansell E R, Ziegler C L. 2013. Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. Journal of the Atmospheric Sciences, 70(7): 2032-2050, doi: 10.1175/JAS-D-12-0264.1.

     

    Mitzeva R, Latham J, Petrova S. 2006. A comparative modeling study of the early electrical development of maritime and continental thunderstorms. Atmospheric Research, 82(1-2): 26-36, doi: 10.1016/j.atmosres.2005.01.006.

     

    Orville R E, Huffines G, Nielsen-Gammon J, et al. 2000. Enhancement of cloud-to-ground lightning over Houston, Texas. Geophysical Research Letters, 28(13): 2597-2600, doi: 10.1029/2001GL012990.

     

    Rust W D, Macgorman D R, Arnold R T. 1981. Positive cloud-to-ground lightning flashes in severe storms. Geophysical Research Letters, 8(7): 791-794, doi: 10.1029/GL008i007p00791.

     

    Shi Z, Tan Y B, Tang H Q, et al. 2015. A numerical study of aerosol effects on the electrification and flash rate of thunderstorms. Chinese Journal of Atmospheric Sciences (in Chinese). doi: 10.3878/j.issn.1006-9895.1412.14230.

     

    Shi Z, Tan Y B, Tang H Q, et al. 2015. Aerosol effect on the land-ocean contrast in thunderstorm electrification and lightning frequency. Atmospheric Research, 164-165: 131-141, doi: 10.1016/j.atmosres.2015.05.006.

     

    Steiger S M, Orville R E. 2003. Cloud-to-ground lightning enhancement over Southern Louisiana. Geophysical Research Letters, 30(19): 1975, doi: 10.1029/2003GL017923.

     

    Takeuti T, Nakano M, Brook M, et al. 1978. The anomalous winter thunderstorms of the Hokuriku Coast. Journal of Geophysical Research: Atmospheres, 83(C5): 2385-2394, doi: 10.1029/JC083iC05p02385.

     

    Tan Y B, Peng L, Shi Z, et al. 2016. Lightning flash density in relation to aerosol over Nanjing (China). Atmospheric Research, 174-175: 1-8, doi: 10.1016/j.atmosres.2016.01.009.

     

    Tan Y B, Shi Z, Chen Z L, et al. 2015. A numerical study of aerosol effects on electrification of thunderstorms. Journal of Atmospheric and Solar-Terrestrial Physics, doi: 10.1016/j.jastp.2015.11.006.

     

    Tan Y B, Tao S C, Liang Z W, et al. 2014. Numerical study on relationship between lightning types and distribution of space charge and electric potential. Journal of Geophysica Research: Atmospheres, 119(2): 1003-1014, doi: 10.1002/2013JD019983.

     

    Tan Y B, Tao S C, Zhu B Y, et al. 2006. Numerical simulations of the bi-level and branched structure of intracloud lightning flashes. Science in China Series D, 49(6): 661-672, doi: 10.1007/s11430-006-0661-5.

     

    Tan Y B, Tao S C, Zhu B Y, et al. 2007. A simulation of the effects of intra-cloud lightning discharges on the charges and electrostatic potential distributions in a thundercloud. Chinese Journal of Geophysics (in Chinese), 50 (4): 1053-1065, doi: 10.3321/j.issn:0001-5733.2007.04.012.

     

    Wang C E. 2005. A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. Journal of Geophysical Research: Atmospheres, 110(D21): D21211, doi: 10.1029/2004JD005720.

     

    Wang Q, Hu Z J. 1991. Three-dimensional elastic atmospheric numerical model and the simulations of a severe storm case. Acta Meteorologica Sinica (in Chinese), 48(1): 91-101. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qxxw199101005&dbname=CJFD&dbcode=CJFQ

     

    Wang Y, Wan Q, Meng W, et al. 2011. Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmospheric Chemistry and Physics, 11(23): 12421-12436, doi: 10.5194/acp-11-12421-2011.

     

    Westcott N E. 1995. Summertime cloud-to-ground lightning activity around major Midwestern Urban Areas. Journal of Applied Meteorology, 34(7): 1633-1642, doi: 10.1175/1520-0450-34.7.1633.

     

    Yin Y, Levin Z, Reisin T G, et al. 2000. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—a numerical study. Atmospheric Research, 53(1-3): 91-116, doi: 10.1016/S0169-8095(99)00046-0.

     

    Yu D W, He G F, Zhou Y, et al. 2001. Three-dimensional convective cloud seeding model and its field application. Journal of Applied Meteorological Science (in Chinese), 12(S1): 122-132. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYQX2001S1015.htm

     

    Yuan T L, Remer L A, Pickering K E, et al. 2011. Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophysical Research Letters, 34(4): L04701, doi: 10.1029/2010GL046052.

     

    Zhao P G, Yin Y, Xiao H. 2015. The effects of aerosol on development of thunderstorm electrification: a numerical study. Atmospheric Research, 153: 376-391, doi:10.1016/j.atmosres.2014.09.011.

     

    Ziegler C L, Macgorman D R, Dye J E, et al. 1991. A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. Journal of Geophysical Research Atmospheres, 96(D7): 12833-12855, doi:10.1029/91JD01246.

     

    胡志晋, 何观芳. 1987.积雨云微物理过程的数值模式(一)微物理模式.气象学报, 45(4): 467-484. doi: 10.11676/qxxb1987.060

     

    师正, 谭涌波, 唐慧强等. 2015.气溶胶对雷暴云起电以及闪电发生率影响的数值模拟.大气科学, 39(5): 941-952, doi: 10.3878/j.issn.1006-9895.1412.14230.

     

    谭涌波, 陶善昌, 祝宝友等. 2007.云闪放电对云内电荷和电位分布影响的数值模拟.地球物理学报, 50(4): 1053-1065, doi: 10.3321/j.issn:0001-5733.2007.04.012. http://www.geophy.cn/CN/abstract/abstract634.shtml

     

    王谦, 胡志晋. 1991.三维弹性大气模式和实测强风暴的模拟.气象学报, 48(1): 91-101. doi: 10.11676/qxxb1991.013

     

    于达维, 何观芳, 周勇等. 2001.三维对流云催化模式及其外场试用.应用气象学报, 12(S1): 122-132. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1015.htm

  • 加载中

(9)

计量
  • 文章访问数:  1272
  • PDF下载数:  648
  • 施引文献:  0
出版历程
收稿日期:  2016-08-23
修回日期:  2016-09-13
上线日期:  2017-08-05

目录